{"title":"Data preprocessing methods for selective sweep detection using convolutional neural networks","authors":"Hanqing Zhao, Nikolaos Alachiotis","doi":"10.1016/j.ymeth.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>The identification of positive selection has been framed as a classification task, with Convolutional Neural Networks (CNNs) already outperforming summary statistics and likelihood-based approaches in accuracy. Despite the prevalence of CNN-based methods that manipulate the pixels of images representing raw genomic data as a preprocessing step to improve classification accuracy, the efficacy of these pixel-rearrangement techniques remains inadequately examined, particularly in the presence of confounding factors like population bottlenecks, migration and recombination hotspots. We introduce a set of pixel rearrangement algorithms aimed at enhancing CNN classification accuracy in detecting selective sweeps. These algorithms are employed to assess the performance of four CNN models for selective sweep detection. Our findings illustrate that the judicious application of rearrangement algorithms notably enhances the overall classification accuracy of a CNN across various datasets simulating confounding factors. We observed that sorting the columns of the genomic matrices has higher on CNN performance than rearranging the sequences. To some extent, these rearrangement algorithms are more robust to misspecified demographic models compared with the utilization of the default preprocessing algorithm as suggested by the respective authors of each CNN architecture. We provide the data rearrangement algorithms as a distinct package available for download at: <span><span>https://github.com/Zhaohq96/Genetic-data-rearrangement</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"233 ","pages":"Pages 19-29"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002408","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The identification of positive selection has been framed as a classification task, with Convolutional Neural Networks (CNNs) already outperforming summary statistics and likelihood-based approaches in accuracy. Despite the prevalence of CNN-based methods that manipulate the pixels of images representing raw genomic data as a preprocessing step to improve classification accuracy, the efficacy of these pixel-rearrangement techniques remains inadequately examined, particularly in the presence of confounding factors like population bottlenecks, migration and recombination hotspots. We introduce a set of pixel rearrangement algorithms aimed at enhancing CNN classification accuracy in detecting selective sweeps. These algorithms are employed to assess the performance of four CNN models for selective sweep detection. Our findings illustrate that the judicious application of rearrangement algorithms notably enhances the overall classification accuracy of a CNN across various datasets simulating confounding factors. We observed that sorting the columns of the genomic matrices has higher on CNN performance than rearranging the sequences. To some extent, these rearrangement algorithms are more robust to misspecified demographic models compared with the utilization of the default preprocessing algorithm as suggested by the respective authors of each CNN architecture. We provide the data rearrangement algorithms as a distinct package available for download at: https://github.com/Zhaohq96/Genetic-data-rearrangement.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.