{"title":"Easy-to-Engineer Flexible Nanoelectrode Sensor from an Inexpensive Overhead Projector Sheet for Sweat Neuropeptide-Y Detection.","authors":"Jayakrishnan Aerathupalathu Janardhanan, Jia-Wei She, Hsiao-Hua Yu","doi":"10.1021/acsabm.4c01229","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we report an inexpensive and easy-to-engineer flexible nanobiosensor electrode platform by exploring a nonconductive overhead projector (OHP) sheet for sweat Neuropeptide-Y (NPY) detection, a potential biomarker for stress, cardiovascular regulation, appetite, etc. We converted a nonconductive OHP sheet into a conductive nanobiosensor electrode platform with a hybrid polymerization method, which consists of interfacial polymerization of pyrrole and a template-free electropolymerization technique to decorate the electrode platform with poly(EDOT-COOH-<i>co</i>-EDOT-EG3) nanotubes. The selection of poly(EDOT-COOH) features an easy conjugation of NPY antibody (NPY-Ab) through EDC/Sulfo-NHS coupling chemistry, while poly(EDOT-EG3) is best known to reduce nonspecific binding of biomolecules. The antibody conjugation on the polymer surface was characterized by a quartz crystal microbalance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and chronoamperometry techniques. The OHP nanosensor platform exhibited the successful detection of NPY analyte through a chronoamperometry method in phosphate-buffered saline with a wide range of concentrations from 1 pg/mL to 1 μg/mL with a limit of detection of 0.68 pg/mL having good linearity (<i>R</i><sup>2</sup> = 0.9841). The sensor platform exhibited excellent stability, reproducibility, repeatability, and a shelf-life of 13 days. Furthermore, the sensor showed superior selectivity to a 100 pg/mL NPY analyte among other interfering compounds such as tumor necrosis factor α, cortisol, and Interleukin-6. The clinical practicality of the sensor was confirmed through the detection of 100 pg/mL NPY spiked artificial perspiration, highlighting the possibility of integrating the sensor platform to wearable healthcare applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"8423-8433"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we report an inexpensive and easy-to-engineer flexible nanobiosensor electrode platform by exploring a nonconductive overhead projector (OHP) sheet for sweat Neuropeptide-Y (NPY) detection, a potential biomarker for stress, cardiovascular regulation, appetite, etc. We converted a nonconductive OHP sheet into a conductive nanobiosensor electrode platform with a hybrid polymerization method, which consists of interfacial polymerization of pyrrole and a template-free electropolymerization technique to decorate the electrode platform with poly(EDOT-COOH-co-EDOT-EG3) nanotubes. The selection of poly(EDOT-COOH) features an easy conjugation of NPY antibody (NPY-Ab) through EDC/Sulfo-NHS coupling chemistry, while poly(EDOT-EG3) is best known to reduce nonspecific binding of biomolecules. The antibody conjugation on the polymer surface was characterized by a quartz crystal microbalance, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and chronoamperometry techniques. The OHP nanosensor platform exhibited the successful detection of NPY analyte through a chronoamperometry method in phosphate-buffered saline with a wide range of concentrations from 1 pg/mL to 1 μg/mL with a limit of detection of 0.68 pg/mL having good linearity (R2 = 0.9841). The sensor platform exhibited excellent stability, reproducibility, repeatability, and a shelf-life of 13 days. Furthermore, the sensor showed superior selectivity to a 100 pg/mL NPY analyte among other interfering compounds such as tumor necrosis factor α, cortisol, and Interleukin-6. The clinical practicality of the sensor was confirmed through the detection of 100 pg/mL NPY spiked artificial perspiration, highlighting the possibility of integrating the sensor platform to wearable healthcare applications.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.