Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study.
{"title":"Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study.","authors":"Jorik Stoop, Yuka Yokoyama, Taiji Adachi","doi":"10.1007/s10237-024-01899-3","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary ossification and maintenance of the growth plate are crucial aspects of long bone formation. Parathyroid hormone-related protein (PTHrP) has been implicated as a key factor in maintaining the growth plate, and studies suggest that PTHrP expression in the resting zone is closely related with formation of the secondary ossification center (SOC). However, details of the relationship between resting zone PTHrP expression and preservation of the growth plate remain unclear. In this study, we aim to investigate the role of resting zone PTHrP expression on maintenance of the growth plate using a computational method. We extend an existing continuum-based particle model of tissue morphogenesis to include PTHrP and Indian hedgehog (Ihh) signaling, allowing the model to capture biochemical and mechanical regulation of individual cell activities. Our model indicates that the timing of resting zone PTHrP expression-specifically the rate of increase in production at the onset of SOC formation-is potentially a crucial mechanism for maintenance of the growth plate.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01899-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary ossification and maintenance of the growth plate are crucial aspects of long bone formation. Parathyroid hormone-related protein (PTHrP) has been implicated as a key factor in maintaining the growth plate, and studies suggest that PTHrP expression in the resting zone is closely related with formation of the secondary ossification center (SOC). However, details of the relationship between resting zone PTHrP expression and preservation of the growth plate remain unclear. In this study, we aim to investigate the role of resting zone PTHrP expression on maintenance of the growth plate using a computational method. We extend an existing continuum-based particle model of tissue morphogenesis to include PTHrP and Indian hedgehog (Ihh) signaling, allowing the model to capture biochemical and mechanical regulation of individual cell activities. Our model indicates that the timing of resting zone PTHrP expression-specifically the rate of increase in production at the onset of SOC formation-is potentially a crucial mechanism for maintenance of the growth plate.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.