Hidden water's influence on rhodopsin activation.

IF 3.2 3区 生物学 Q2 BIOPHYSICS
Biophysical journal Pub Date : 2024-12-17 Epub Date: 2024-11-16 DOI:10.1016/j.bpj.2024.11.012
Zachary T Bachler, Michael F Brown
{"title":"Hidden water's influence on rhodopsin activation.","authors":"Zachary T Bachler, Michael F Brown","doi":"10.1016/j.bpj.2024.11.012","DOIUrl":null,"url":null,"abstract":"<p><p>Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"4167-4179"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.11.012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Structural biology relies on several powerful techniques, but these tend to be limited in their ability to characterize protein fluctuations and mobility. Overreliance on structural approaches can lead to omission of critical information regarding biological function. Currently there is a need for complementary biophysical methods to visualize these mobile aspects of protein function. Here, we review hydrostatic and osmotic pressure-based techniques to address this shortcoming for the paradigm of rhodopsin. Hydrostatic and osmotic pressure data contribute important examples, which are interpreted in terms of an energy landscape for hydration-mediated protein dynamics. We find that perturbations of rhodopsin conformational equilibria by force-based methods are not unrelated phenomena; rather they probe various hydration states involving functional proton reactions. Hydrostatic pressure acts on small numbers of strongly interacting structural or solvent-shell water molecules with relatively high energies, while osmotic pressure acts on large numbers of weakly interacting bulk-like water molecules with low energies. Local solvent fluctuations due to the hydration shell and collective water interactions affect hydrogen-bonded networks and domain motions that are explained by a hierarchical energy landscape model for protein dynamics.

隐藏的水对黄光素活化的影响
结构生物学依赖于几种强大的技术,但这些技术在描述蛋白质波动和流动性方面往往能力有限。过度依赖结构方法可能会导致遗漏有关生物功能的关键信息。目前,我们需要补充性的生物物理方法来观察蛋白质功能的这些流动性方面。在此,我们回顾了以静水压和渗透压为基础的技术,以解决这一缺陷,并以犀牛蛋白为范例。静水压和渗透压数据提供了重要的示例,这些示例从水合介导的蛋白质动力学能量景观的角度进行了解释。我们发现,基于力的方法对视网膜素构象平衡的扰动并非无关现象;相反,它们探测了涉及功能质子反应的各种水合状态。静水压作用于少量强相互作用的结构水分子或溶剂壳水分子,能量相对较高,而渗透压作用于大量弱相互作用的大块水分子,能量较低。水合壳和集体水相互作用引起的局部溶剂波动会影响氢键网络和结构域运动,而蛋白质动力学的分层能谱模型可以解释这些运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信