Cohesin rad21 mutation dysregulates erythropoiesis and granulopoiesis output within the whole kidney marrow of adult zebrafish.

IF 5 2区 生物学 Q2 CELL BIOLOGY
Gregory Gimenez, Maggie L Kalev-Zylinska, Ian Morison, Stefan K Bohlander, Julia A Horsfield, Jisha Antony
{"title":"Cohesin <i>rad21</i> mutation dysregulates erythropoiesis and granulopoiesis output within the whole kidney marrow of adult zebrafish.","authors":"Gregory Gimenez, Maggie L Kalev-Zylinska, Ian Morison, Stefan K Bohlander, Julia A Horsfield, Jisha Antony","doi":"10.1152/ajpcell.00657.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Cohesin complex is essential for cell division and for regulating cell type-specific gene expression programs. Mutations in genes encoding the cohesin subunits are associated with hematological malignancies, pre-leukemia and clonal hematopoiesis of indeterminate potential. In this study, we examined how cohesin mutation impacts hematopoiesis using adult zebrafish that carry heterozygous germline nonsense mutation in the cohesin subunit, <i>rad21</i> (<i>rad21+/-</i>) that is orthologous to human <i>RAD21</i>. Single cell RNA sequencing analyses showed that adult zebrafish harboring <i>rad21+/-</i> mutation exhibit significant transcriptional dysregulation within the whole kidney marrow and have altered erythroid and granulocyte output. Erythroid progenitors were expanded in <i>rad21+/-</i> and erythroid differentiation was altered. The expression profile of several erythroid genes, including <i>gata1a,</i> was dysregulated in <i>rad21+/-</i> erythroid cells. Mature granulocyte population declined in <i>rad21+/-</i>, and the transcriptional program of granulocytes was impaired but granulocytic maturation was maintained. Granulocytes from <i>rad21+/-</i> showed upregulation of stress hematopoiesis factor, <i>cebpb</i>. These findings show that normal <i>rad21</i> is required to maintain steady erythropoiesis and granulopoiesis in the adult zebrafish marrow.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00657.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cohesin complex is essential for cell division and for regulating cell type-specific gene expression programs. Mutations in genes encoding the cohesin subunits are associated with hematological malignancies, pre-leukemia and clonal hematopoiesis of indeterminate potential. In this study, we examined how cohesin mutation impacts hematopoiesis using adult zebrafish that carry heterozygous germline nonsense mutation in the cohesin subunit, rad21 (rad21+/-) that is orthologous to human RAD21. Single cell RNA sequencing analyses showed that adult zebrafish harboring rad21+/- mutation exhibit significant transcriptional dysregulation within the whole kidney marrow and have altered erythroid and granulocyte output. Erythroid progenitors were expanded in rad21+/- and erythroid differentiation was altered. The expression profile of several erythroid genes, including gata1a, was dysregulated in rad21+/- erythroid cells. Mature granulocyte population declined in rad21+/-, and the transcriptional program of granulocytes was impaired but granulocytic maturation was maintained. Granulocytes from rad21+/- showed upregulation of stress hematopoiesis factor, cebpb. These findings show that normal rad21 is required to maintain steady erythropoiesis and granulopoiesis in the adult zebrafish marrow.

Cohesin rad21突变会导致成年斑马鱼整个肾骨髓中的红细胞生成和粒细胞生成失调。
凝聚素复合体对细胞分裂和调节细胞类型特异性基因表达程序至关重要。编码粘合素亚基的基因突变与血液恶性肿瘤、白血病前期和潜能不确定的克隆性造血有关。在这项研究中,我们利用成体斑马鱼研究了凝聚素突变如何影响造血,斑马鱼的凝聚素亚基 rad21(rad21+/-)与人类 RAD21 同源,携带杂合子种系无义突变。单细胞 RNA 测序分析表明,携带 rad21+/- 突变的成年斑马鱼在整个肾髓中表现出明显的转录失调,红细胞和粒细胞的输出发生了改变。红细胞祖细胞在rad21+/-体内扩增,红细胞分化发生改变。在rad21+/-红细胞中,包括gata1a在内的几个红细胞基因的表达谱失调。rad21+/-成熟粒细胞数量减少,粒细胞转录程序受损,但粒细胞成熟得以维持。rad21+/-的粒细胞表现出应激造血因子cebpb的上调。这些发现表明,在成年斑马鱼骨髓中,正常的 rad21 是维持稳定的红细胞生成和粒细胞生成所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
1.80%
发文量
252
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信