Mina Sarem , Nuhamin Eshetu Deresse , Els Verstrynge , Stijn François
{"title":"Micromechanics-based variational phase-field modeling of fatigue fracture","authors":"Mina Sarem , Nuhamin Eshetu Deresse , Els Verstrynge , Stijn François","doi":"10.1016/j.jmps.2024.105932","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we extend the micromechanics-based phase-field model to simulate fatigue failure. The coupling of a micromechanics-based framework with the phase-field approach helps to differentiate between failure modes, by distinguishing between open and closed microcracks. This integrated framework links continuum field variables, such as plastic strain and damage variable, to micromechanical mechanisms like frictional sliding and microcrack opening. We first improve the algorithm’s stability during loading–unloading in the tensile regime through a modification of the plasticity evolution equations. Next, we incorporate fatigue damage accumulation and deterioration due to cyclic loading into the micromechanics-based phase-field model. A fatigue degradation function, driven by free energy accumulation, is introduced to degrade the fracture energy upon reaching a specified threshold during cyclic loading. Various cyclic loads are applied to benchmark tests, both with and without imperfections (e.g. holes, inclusions, voids), under plane strain conditions to capture diverse failure modes. The results demonstrate the model’s capability to accurately describe tensile, shear, and mixed-mode fracture under cyclic loading. Furthermore, the model effectively simulates key features of fatigue behavior, including crack nucleation, growth, and coalescence.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"194 ","pages":"Article 105932"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003983","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we extend the micromechanics-based phase-field model to simulate fatigue failure. The coupling of a micromechanics-based framework with the phase-field approach helps to differentiate between failure modes, by distinguishing between open and closed microcracks. This integrated framework links continuum field variables, such as plastic strain and damage variable, to micromechanical mechanisms like frictional sliding and microcrack opening. We first improve the algorithm’s stability during loading–unloading in the tensile regime through a modification of the plasticity evolution equations. Next, we incorporate fatigue damage accumulation and deterioration due to cyclic loading into the micromechanics-based phase-field model. A fatigue degradation function, driven by free energy accumulation, is introduced to degrade the fracture energy upon reaching a specified threshold during cyclic loading. Various cyclic loads are applied to benchmark tests, both with and without imperfections (e.g. holes, inclusions, voids), under plane strain conditions to capture diverse failure modes. The results demonstrate the model’s capability to accurately describe tensile, shear, and mixed-mode fracture under cyclic loading. Furthermore, the model effectively simulates key features of fatigue behavior, including crack nucleation, growth, and coalescence.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.