{"title":"Abatement of volatile organic compounds (VOCs) and fluorine gases by a microwave plasma torch (MPT)","authors":"Dzeyewir Divine Nyuyki , Hugues Nkomba Museba , Yannick Kumona Balue , BongJu Lee","doi":"10.1016/j.psep.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>The use of microwave plasma torch (MPT) in the abatement of potent greenhouse and fluorinated (F-gases) gases is crucial due to their high global warming potential. The purpose of this study was the abatement of volatile organic compounds (VOCs) and carbon tetrafluoride (CF4) using specifically designed reverse vortex flow reactor (RVR) and pillar of fire reactor (POF). The RVR has properties that are crucial for their synergistic effects with the MPT, and the POF configurations showed high-efficiency combustion due to plasma radicals and a large contact area with the MPT. The study used Aspen Plus and COMSOL software to analyse the mass balance involved in the thermal decomposition of isopropyl alcohol (C₃H₈O) and CF<sub>4</sub> and to design the RVR and POF reactors. Using MPT without hydrocarbon fuel, low-concentration C₃H₈O and CF<sub>4</sub> were successfully destroyed in high-flow streams. The experiment on C₃H₈O showed that using a plasma power of 2 kW and 1 cubic meter per minute (CMM) of bulk gas, a destruction removal efficiency (DRE) of 95 % was achieved for a polluted C₃H₈O of 410 ppm. In a second experiment, a DRE of 94 % was achieved for a polluted C₃H₈O of 370 ppm. The first CF<sub>4</sub> experiment achieved a DRE of 93.3 % with a 7 kW plasma power and 1 CMM bulk gas polluted at 285 ppm. In the second experiment, the presence of highly reactive hydroxyl radicals (OH*) in steam plasma improved the DRE to 99.8 % at 7 kW plasma power and 100 LPM bulk polluted at 180 ppm.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"193 ","pages":"Pages 43-53"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024014149","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The use of microwave plasma torch (MPT) in the abatement of potent greenhouse and fluorinated (F-gases) gases is crucial due to their high global warming potential. The purpose of this study was the abatement of volatile organic compounds (VOCs) and carbon tetrafluoride (CF4) using specifically designed reverse vortex flow reactor (RVR) and pillar of fire reactor (POF). The RVR has properties that are crucial for their synergistic effects with the MPT, and the POF configurations showed high-efficiency combustion due to plasma radicals and a large contact area with the MPT. The study used Aspen Plus and COMSOL software to analyse the mass balance involved in the thermal decomposition of isopropyl alcohol (C₃H₈O) and CF4 and to design the RVR and POF reactors. Using MPT without hydrocarbon fuel, low-concentration C₃H₈O and CF4 were successfully destroyed in high-flow streams. The experiment on C₃H₈O showed that using a plasma power of 2 kW and 1 cubic meter per minute (CMM) of bulk gas, a destruction removal efficiency (DRE) of 95 % was achieved for a polluted C₃H₈O of 410 ppm. In a second experiment, a DRE of 94 % was achieved for a polluted C₃H₈O of 370 ppm. The first CF4 experiment achieved a DRE of 93.3 % with a 7 kW plasma power and 1 CMM bulk gas polluted at 285 ppm. In the second experiment, the presence of highly reactive hydroxyl radicals (OH*) in steam plasma improved the DRE to 99.8 % at 7 kW plasma power and 100 LPM bulk polluted at 180 ppm.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.