Wenqi Wu , Ming Li , Ming Zhang , Yanqing Wang , Longke Wang , Yi You
{"title":"Electric vehicle battery closed-loop supply chain pricing and carbon reduction decisions under the carbon cap-and-trade and reward-penalty policies","authors":"Wenqi Wu , Ming Li , Ming Zhang , Yanqing Wang , Longke Wang , Yi You","doi":"10.1016/j.psep.2024.10.121","DOIUrl":null,"url":null,"abstract":"<div><div>Recycling end-of-life electric vehicles (EVs) batteries to conserve resources and reduce carbon emissions has obtained a great deal of concern. This paper studied how carbon cap-and-trade and reward-penalty measures jointly impacted EV battery pricing and decarbonization strategies. Three recycling modes covering single-participator, mixed-participator, and joint recycling are established. Optimal pricing and carbon mitigation strategies, total revenue, and recycling percentage are solved and compared. The dynamic effects of target recycling percentage and rewards and punishments on total revenue and recycling percentage are analyzed by numerical examples. Results show that: (1) The factory price, selling price, collection price, and carbon emission mitigation scale of power batteries are affected by cap-and-trade and reward-penalty mechanisms; (2) Reward-penalty can improve both total revenue and recycling percentage; (3) The cap-and-trade mechanism optimizes the total revenues, showing that the total revenue increase with the increasement of carbon quota and carbon price, while the increase of carbon price leads to worse recycling percentage; (4) The supply chain performance under different recycling modes is affected by policy intervention, and the joint recycling mode is better.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"192 ","pages":"Pages 1467-1482"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582024014095","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recycling end-of-life electric vehicles (EVs) batteries to conserve resources and reduce carbon emissions has obtained a great deal of concern. This paper studied how carbon cap-and-trade and reward-penalty measures jointly impacted EV battery pricing and decarbonization strategies. Three recycling modes covering single-participator, mixed-participator, and joint recycling are established. Optimal pricing and carbon mitigation strategies, total revenue, and recycling percentage are solved and compared. The dynamic effects of target recycling percentage and rewards and punishments on total revenue and recycling percentage are analyzed by numerical examples. Results show that: (1) The factory price, selling price, collection price, and carbon emission mitigation scale of power batteries are affected by cap-and-trade and reward-penalty mechanisms; (2) Reward-penalty can improve both total revenue and recycling percentage; (3) The cap-and-trade mechanism optimizes the total revenues, showing that the total revenue increase with the increasement of carbon quota and carbon price, while the increase of carbon price leads to worse recycling percentage; (4) The supply chain performance under different recycling modes is affected by policy intervention, and the joint recycling mode is better.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.