Controllable Ultrathin Nickel Nanoislands With Dense Discrete Space Charge Regions: Steering Hole Extraction for High-Performance Underwater Multispectral Weak-Light Photodetection

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-16 DOI:10.1002/smll.202407110
Shuijing Wang, Tangying Miao, Yang Wang, Jinshan Xu, Fengyuan Jia, Yang Li, Jiahui Kou, Zhongzi Xu
{"title":"Controllable Ultrathin Nickel Nanoislands With Dense Discrete Space Charge Regions: Steering Hole Extraction for High-Performance Underwater Multispectral Weak-Light Photodetection","authors":"Shuijing Wang, Tangying Miao, Yang Wang, Jinshan Xu, Fengyuan Jia, Yang Li, Jiahui Kou, Zhongzi Xu","doi":"10.1002/smll.202407110","DOIUrl":null,"url":null,"abstract":"Undersea optical communication (UOC) is vital for ocean exploration and military applications. In the dim-light underwater environment, photodetectors must maximize photon utilization by minimizing optical losses and carrier recombination. This can be achieved by integrating ultrathin metal nanostructures with photocatalysts to form Schottky junctions, which enhance charge separation and injection while mitigating metal-induced light shading. The strategic design of discrete metal nanostructures providing numerous high-depth space charge regions (SCRs) without overlap offers a promising approach to optimize hole transport paths and further suppress recombination. Here, a facile phase-separation lithography technique is explored to fabricate tunable ultrathin Ni nanoislands atop n-Si, yielding high-performance photoelectrochemical photodetectors (PEC PDs) tailored for underwater weak-light environments. This results indicate that key determinant of hole extraction behavior is the relationship between the spacing distance of adjacent Ni nanostructures (d<sub>s</sub>) and twice the SCR radius (W<sub>s</sub>). PEC PDs with optimized 8 nm ultrathin Ni nanostructures featuring closely but non-overlapping SCRs, exhibit a 55-fold increase in photoresponsivity (2.2 mA W<sup>−1</sup>) and a 128-fold enhancement in detection sensitivity (3.2 × 10<sup>11</sup> Jones) at 0 V over Ni film, revealing the exceptional stability. Furthermore, this approach enables effective detection across UV–vis-near infrared spectrum, supporting reliable multispectral UOC and underwater imaging capabilities.","PeriodicalId":228,"journal":{"name":"Small","volume":"248 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407110","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Undersea optical communication (UOC) is vital for ocean exploration and military applications. In the dim-light underwater environment, photodetectors must maximize photon utilization by minimizing optical losses and carrier recombination. This can be achieved by integrating ultrathin metal nanostructures with photocatalysts to form Schottky junctions, which enhance charge separation and injection while mitigating metal-induced light shading. The strategic design of discrete metal nanostructures providing numerous high-depth space charge regions (SCRs) without overlap offers a promising approach to optimize hole transport paths and further suppress recombination. Here, a facile phase-separation lithography technique is explored to fabricate tunable ultrathin Ni nanoislands atop n-Si, yielding high-performance photoelectrochemical photodetectors (PEC PDs) tailored for underwater weak-light environments. This results indicate that key determinant of hole extraction behavior is the relationship between the spacing distance of adjacent Ni nanostructures (ds) and twice the SCR radius (Ws). PEC PDs with optimized 8 nm ultrathin Ni nanostructures featuring closely but non-overlapping SCRs, exhibit a 55-fold increase in photoresponsivity (2.2 mA W−1) and a 128-fold enhancement in detection sensitivity (3.2 × 1011 Jones) at 0 V over Ni film, revealing the exceptional stability. Furthermore, this approach enables effective detection across UV–vis-near infrared spectrum, supporting reliable multispectral UOC and underwater imaging capabilities.

Abstract Image

具有密集离散空间电荷区的可控超薄镍纳米带:为高性能水下多光谱弱光光电探测提取转向孔
海底光通信(UOC)对海洋勘探和军事应用至关重要。在光线昏暗的水下环境中,光电探测器必须最大限度地减少光损耗和载流子重组,从而最大限度地提高光子利用率。要做到这一点,可以将超薄金属纳米结构与光催化剂集成在一起,形成肖特基结,从而增强电荷分离和注入,同时减轻金属引起的光遮蔽。战略性地设计离散金属纳米结构,提供大量无重叠的高深度空间电荷区(SCR),为优化空穴传输路径和进一步抑制重组提供了一种可行的方法。本文探索了一种简便的相分离光刻技术,用于在 n-Si 上制造可调的超薄镍纳米岛,从而生产出适用于水下弱光环境的高性能光电化学光电探测器(PEC PD)。研究结果表明,决定空穴萃取行为的关键因素是相邻镍纳米结构的间距(ds)与两倍可控硅半径(Ws)之间的关系。采用优化的 8 nm 超薄镍纳米结构的 PEC PD 具有紧密但不重叠的 SCR,与镍薄膜相比,在 0 V 电压下,光致发光率提高了 55 倍(2.2 mA W-1),检测灵敏度提高了 128 倍(3.2 × 1011 Jones),显示出卓越的稳定性。此外,这种方法还能在紫外-可见光-近红外光谱范围内进行有效探测,支持可靠的多光谱 UOC 和水下成像功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信