Bioinspired “Intermolecular Pocket” in Soft Molecular Crystal of Porous Organic Cage Exhibiting Reversible Guest Recognition

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Baiyan Li, Laiyu Zhang, Qiong Lei, Mao Yi, Zhiyuan Zhang, Xin Lian, Jian Xu, Shuo Zhang, Lin Li, Xian-He Bu
{"title":"Bioinspired “Intermolecular Pocket” in Soft Molecular Crystal of Porous Organic Cage Exhibiting Reversible Guest Recognition","authors":"Baiyan Li, Laiyu Zhang, Qiong Lei, Mao Yi, Zhiyuan Zhang, Xin Lian, Jian Xu, Shuo Zhang, Lin Li, Xian-He Bu","doi":"10.1002/anie.202421753","DOIUrl":null,"url":null,"abstract":"Porous Organic Cages (POCs) have gathered a lot of attention in sorts of fields. Previous studies often focused on the functionalization of their intrinsic porosity, while the utilization of the extrinsic porosity has been seldom reported. To date, the rational construction of functionalized extrinsic porosity in POCs is a serious challenge, which still relies on trial and error. Inspired by hydrophobic proteins, in the contribution, a POC (namely NKPOC-DS) is obtained with hydrophobic “intermolecular pocket” as extrinsic porosity constructed through the assembly of disulfide bonds with hydrophobic groups, facilitating strong supramolecular interactions as confirmed by Electrostatic Potential (ESP) maps and single-crystal X-ray diffraction analysis. Notably, NKPOC-DS exhibits a unique C2H6-selective \"breathing behaviour\" due to the presence of softness in its extrinsic porosity, which does not extend to other gases such as C2H4, CH4, CO2, N2, and H2. Such specific recognition of C2H6 thus provides NKPOC-DS with the ability to preferentially adsorb C2H6 from a C2H6/C2H4 mixture. The innovative approach of biomimicry in the design of functional POCs provides new insights into manipulating the packing of cages, paving the way for potential applications in guest recognition and adsorption separations.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421753","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Porous Organic Cages (POCs) have gathered a lot of attention in sorts of fields. Previous studies often focused on the functionalization of their intrinsic porosity, while the utilization of the extrinsic porosity has been seldom reported. To date, the rational construction of functionalized extrinsic porosity in POCs is a serious challenge, which still relies on trial and error. Inspired by hydrophobic proteins, in the contribution, a POC (namely NKPOC-DS) is obtained with hydrophobic “intermolecular pocket” as extrinsic porosity constructed through the assembly of disulfide bonds with hydrophobic groups, facilitating strong supramolecular interactions as confirmed by Electrostatic Potential (ESP) maps and single-crystal X-ray diffraction analysis. Notably, NKPOC-DS exhibits a unique C2H6-selective "breathing behaviour" due to the presence of softness in its extrinsic porosity, which does not extend to other gases such as C2H4, CH4, CO2, N2, and H2. Such specific recognition of C2H6 thus provides NKPOC-DS with the ability to preferentially adsorb C2H6 from a C2H6/C2H4 mixture. The innovative approach of biomimicry in the design of functional POCs provides new insights into manipulating the packing of cages, paving the way for potential applications in guest recognition and adsorption separations.
多孔有机笼软分子晶体中的生物启发 "分子间口袋 "可实现可逆客体识别
多孔有机笼(POC)在各个领域都受到了广泛关注。以往的研究通常侧重于其内在孔隙度的功能化,而对其外在孔隙度的利用却鲜有报道。迄今为止,如何在 POC 中合理构建功能化的外孔隙是一个严峻的挑战,仍然需要反复试验。本文受疏水蛋白质的启发,通过二硫键与疏水基团的组装,获得了一种具有疏水 "分子间口袋 "作为外孔隙的 POC(即 NKPOC-DS),从而促进了静电位图和单晶 X 射线衍射分析所证实的强超分子相互作用。值得注意的是,NKPOC-DS 由于其外在孔隙率中存在软性,因此表现出独特的 C2H6 选择性 "呼吸行为",而其他气体(如 C2H4、CH4、CO2、N2 和 H2)则没有这种 "呼吸行为"。因此,NKPOC-DS 对 C2H6 的这种特殊识别能力使其能够优先吸附 C2H6/C2H4 混合物中的 C2H6。在功能性 POC 的设计中采用生物仿生的创新方法,为操纵笼的填料提供了新的见解,为客体识别和吸附分离的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信