An efficient discrete Chebyshev polynomials strategy for tempered time fractional nonlinear Schrödinger problems

IF 11.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Mohammad Hossein Heydari, Dumitru Baleanu
{"title":"An efficient discrete Chebyshev polynomials strategy for tempered time fractional nonlinear Schrödinger problems","authors":"Mohammad Hossein Heydari, Dumitru Baleanu","doi":"10.1016/j.jare.2024.11.014","DOIUrl":null,"url":null,"abstract":"<h3><strong>Introduction:</strong></h3>An interesting type of fractional derivatives that has received widespread attention in recent years is the tempered fractional derivatives. These fractional derivatives are a generalization of the well-known fractional derivatives, such as Caputo and Riemann-Liouville. In fact, these derivatives are obtained by multiplying the expressed fractional derivatives by an exponential factor. These fractional derivatives have an additional parameter called <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BB;&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 583.5 848.5\" width=\"1.355ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BB\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">λ</mi></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">λ</mi></mrow></math></script></span> such that in the case of <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BB;&lt;/mi&gt;&lt;mo is=\"true\"&gt;=&lt;/mo&gt;&lt;mn is=\"true\"&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 2418.1 848.5\" width=\"5.616ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BB\"></use></g><g is=\"true\" transform=\"translate(861,0)\"><use xlink:href=\"#MJMAIN-3D\"></use></g><g is=\"true\" transform=\"translate(1917,0)\"><use xlink:href=\"#MJMAIN-30\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\">λ</mi><mo is=\"true\">=</mo><mn is=\"true\">0</mn></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">λ</mi><mo is=\"true\">=</mo><mn is=\"true\">0</mn></mrow></math></script></span>, the classical Caputo or Riemann-Liouville fractional derivative is obtained.<h3><strong>Objectives:</strong></h3>Employing the Caputo tempered fractional derivative to define time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. Applying the orthonormal discrete Chebyshev polynomials (ODCPs) to solve these problems. For this purposes, the operational matrices of ordinary and tempered fractional derivatives of the ODCPs are obtained.<h3><strong>Methods:</strong></h3>By representing the problem’s solutions in terms of the ODCPs (with some unknown coefficients) and exploiting the expressed operational matrices, along with the collocation strategy, two systems of nonlinear algebraic equations are derived. By solving these systems, the expressed coefficients, and subsequently the solution of the main fractional problems are obtained.<h3><strong>Results:</strong></h3>Some numerical examples are investigated to acknowledge the high accuracy of the designed approaches.<h3><strong>Conclusion:</strong></h3>The tempered fractional derivative in the Caputo form is utilized to define the time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. The ODCPs are used to design a numerical strategy for these problems. To this purpose, some operational matrices for these polynomials are obtained. In the designed procedures, the problem’s solution are obtained by solving an algebraic system of equations. These systems are obtained by approximating the solution with the ODCPs and employing the expressed matrix relationships, along with the collocation technique. Some examples are presented to check the validity of the developed algorithms. The reported results acknowledged the high accuracy of the designed schemes.","PeriodicalId":14952,"journal":{"name":"Journal of Advanced Research","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.jare.2024.11.014","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction:

An interesting type of fractional derivatives that has received widespread attention in recent years is the tempered fractional derivatives. These fractional derivatives are a generalization of the well-known fractional derivatives, such as Caputo and Riemann-Liouville. In fact, these derivatives are obtained by multiplying the expressed fractional derivatives by an exponential factor. These fractional derivatives have an additional parameter called λ such that in the case of λ=0, the classical Caputo or Riemann-Liouville fractional derivative is obtained.

Objectives:

Employing the Caputo tempered fractional derivative to define time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. Applying the orthonormal discrete Chebyshev polynomials (ODCPs) to solve these problems. For this purposes, the operational matrices of ordinary and tempered fractional derivatives of the ODCPs are obtained.

Methods:

By representing the problem’s solutions in terms of the ODCPs (with some unknown coefficients) and exploiting the expressed operational matrices, along with the collocation strategy, two systems of nonlinear algebraic equations are derived. By solving these systems, the expressed coefficients, and subsequently the solution of the main fractional problems are obtained.

Results:

Some numerical examples are investigated to acknowledge the high accuracy of the designed approaches.

Conclusion:

The tempered fractional derivative in the Caputo form is utilized to define the time fractional nonlinear Schrödinger equation and a coupled system of nonlinear Schrödinger equations. The ODCPs are used to design a numerical strategy for these problems. To this purpose, some operational matrices for these polynomials are obtained. In the designed procedures, the problem’s solution are obtained by solving an algebraic system of equations. These systems are obtained by approximating the solution with the ODCPs and employing the expressed matrix relationships, along with the collocation technique. Some examples are presented to check the validity of the developed algorithms. The reported results acknowledged the high accuracy of the designed schemes.

Abstract Image

针对节制时间分数非线性薛定谔问题的高效离散切比雪夫多项式策略
导言:近年来,一种有趣的分数导数类型受到广泛关注,这就是节制分数导数。这些分数导数是 Caputo 和 Riemann-Liouville 等著名分数导数的一般化。事实上,这些导数是通过将已表达的分数导数乘以指数因子而得到的。这些分数导数有一个名为 λλ 的附加参数,因此在 λ=0λ=0 的情况下,可以得到经典的卡普托或黎曼-刘维尔分数导数。应用正交离散切比雪夫多项式(ODCPs)解决这些问题。方法:通过用正交离散切比雪夫多项式(带有一些未知系数)表示问题的解,并利用所表达的运算矩阵,再加上配位策略,得出两个非线性代数方程系统。结果:通过对一些数值示例的研究,确认了所设计方法的高精确度。结论:利用卡普托形式的节制分数导数定义了时间分数非线性薛定谔方程和非线性薛定谔方程耦合系统。ODCPs 用于设计这些问题的数值计算策略。为此,我们获得了这些多项式的一些运算矩阵。在设计的程序中,问题的解决方案是通过求解代数方程系统获得的。这些方程组是通过使用 ODCPs 近似求解,并利用所表达的矩阵关系和搭配技术得到的。为验证所开发算法的有效性,介绍了一些实例。所报告的结果证实了所设计方案的高精确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advanced Research
Journal of Advanced Research Multidisciplinary-Multidisciplinary
CiteScore
21.60
自引率
0.90%
发文量
280
审稿时长
12 weeks
期刊介绍: Journal of Advanced Research (J. Adv. Res.) is an applied/natural sciences, peer-reviewed journal that focuses on interdisciplinary research. The journal aims to contribute to applied research and knowledge worldwide through the publication of original and high-quality research articles in the fields of Medicine, Pharmaceutical Sciences, Dentistry, Physical Therapy, Veterinary Medicine, and Basic and Biological Sciences. The following abstracting and indexing services cover the Journal of Advanced Research: PubMed/Medline, Essential Science Indicators, Web of Science, Scopus, PubMed Central, PubMed, Science Citation Index Expanded, Directory of Open Access Journals (DOAJ), and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信