Fabrication of Ultrahigh‐Loading Dual Copper Sites in Nitrogen‐Doped Porous Carbons Boosting Electroreduction of CO2 to C2H4 Under Neutral Conditions

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jin‐Meng Heng, Hao‐Lin Zhu, Zhen‐Hua Zhao, Pei‐Qin Liao, Xiao‐Ming Chen
{"title":"Fabrication of Ultrahigh‐Loading Dual Copper Sites in Nitrogen‐Doped Porous Carbons Boosting Electroreduction of CO2 to C2H4 Under Neutral Conditions","authors":"Jin‐Meng Heng, Hao‐Lin Zhu, Zhen‐Hua Zhao, Pei‐Qin Liao, Xiao‐Ming Chen","doi":"10.1002/adma.202415101","DOIUrl":null,"url":null,"abstract":"Synthesis of high‐loading atomic‐level dispersed catalysts for highly efficient electrochemical CO<jats:sub>2</jats:sub> reduction reaction (eCO<jats:sub>2</jats:sub>RR) to ethylene (C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub>) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host‐guest strategy is employed, by using a metal‐azolate framework (MAF‐4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen‐doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPC<jats:sub>MAF‐4</jats:sub>‐Cu<jats:sub>2</jats:sub>‐21 (21.2 wt%), NPC<jats:sub>MAF‐4</jats:sub>‐Cu<jats:sub>2</jats:sub>‐11 (10.6 wt%), and NPC<jats:sub>MAF‐4</jats:sub>‐Cu<jats:sub>2</jats:sub>‐7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO<jats:sub>2</jats:sub>RR to yield C<jats:sub>2</jats:sub>H<jats:sub>4</jats:sub> also gradually increased from 38.7 to 93.6 mA cm<jats:sup>−2</jats:sup>. In a 0.1 <jats:sc>m</jats:sc> KHCO<jats:sub>3</jats:sub> electrolyte, at −1.4 V versus reversible hydrogen electrode (<jats:italic>vs</jats:italic>. RHE), NPC<jats:sub>MAF‐4</jats:sub>‐Cu<jats:sub>2</jats:sub>‐21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm<jats:sup>−2</jats:sup>. Such performance can be attributed to the presence of ultrahigh‐loading dual copper sites, which promotes C─C coupling and the formation of C<jats:sub>2</jats:sub> products. The findings demonstrate the confinement effect of MAF‐4 with nanocages is conducive to the preparation of high‐loading atomic‐level catalysts.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202415101","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesis of high‐loading atomic‐level dispersed catalysts for highly efficient electrochemical CO2 reduction reaction (eCO2RR) to ethylene (C2H4) in neutral electrolyte remain challenging tasks. To address common aggregation issues, a host‐guest strategy is employed, by using a metal‐azolate framework (MAF‐4) with nanocages as the host and a dinuclear Cu(I) complex as the guest, to form precursors for pyrolysis into a series of nitrogen‐doped porous carbons (NPCs) with varying loadings of dual copper sites, namely NPCMAF‐4‐Cu2‐21 (21.2 wt%), NPCMAF‐4‐Cu2‐11 (10.6 wt%), and NPCMAF‐4‐Cu2‐7 (6.9 wt%). Interestingly, as the loading of dual copper sites increased from 6.9 to 21.2 wt%, the partial current density for eCO2RR to yield C2H4 also gradually increased from 38.7 to 93.6 mA cm−2. In a 0.1 m KHCO3 electrolyte, at −1.4 V versus reversible hydrogen electrode (vs. RHE), NPCMAF‐4‐Cu2‐21 exhibits the excellent performance with a Faradaic efficiency of 52% and a current density of 180 mA cm−2. Such performance can be attributed to the presence of ultrahigh‐loading dual copper sites, which promotes C─C coupling and the formation of C2 products. The findings demonstrate the confinement effect of MAF‐4 with nanocages is conducive to the preparation of high‐loading atomic‐level catalysts.
在掺氮多孔碳中制备超高负载双铜位点,促进中性条件下将 CO2 电还原为 C2H4
在中性电解质中合成用于高效电化学二氧化碳还原反应(eCO2RR)制乙烯(C2H4)的高负载原子级分散催化剂仍然是一项具有挑战性的任务。为了解决常见的聚集问题,我们采用了一种主宾策略,即以纳米笼的金属氮杂质框架 (MAF-4) 为主,以双核 Cu(I) 复合物为宾,形成前驱体,然后热解成一系列具有不同双铜位点负载的氮掺杂多孔碳 (NPC),即 NPCMAF-4-Cu2-21 (21. 2 wt%)、NPCMAF-4-Cu2-21 (21. 2 wt%)、NPCMAF-4-Cu2-21 (21. 2 wt%)、NPCMAF-4-Cu2-21 (21. 2 wt%)。2 wt%)、NPCMAF-4-Cu2-11(10.6 wt%)和 NPCMAF-4-Cu2-7(6.9 wt%)。有趣的是,随着双铜位点的负载从 6.9 wt% 增加到 21.2 wt%,eCO2RR 生成 C2H4 的部分电流密度也从 38.7 mA cm-2 逐渐增加到 93.6 mA cm-2。在 0.1 m KHCO3 电解液中,当电压为 -1.4 V 时,相对于可逆氢电极(vs. RHE),NPCMAF-4-Cu2-21 表现出卓越的性能,法拉第效率为 52%,电流密度为 180 mA cm-2。这种性能可归因于超高负载双铜位点的存在,它促进了 C─C 偶联和 C2 产物的形成。研究结果表明,带有纳米笼的 MAF-4 的约束效应有利于制备高负荷原子级催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信