Debasmita Sarkar, Ufuoma I. Kara, Rajan Singh, Anirban Phukan, Priyam Mondal, Roy P. Paily, Xiaoguang Wang, Uttam Manna
{"title":"Underwater Vibration Sensor to Enable Automated and Contactless Voice Recognition","authors":"Debasmita Sarkar, Ufuoma I. Kara, Rajan Singh, Anirban Phukan, Priyam Mondal, Roy P. Paily, Xiaoguang Wang, Uttam Manna","doi":"10.1002/adfm.202419049","DOIUrl":null,"url":null,"abstract":"Individuals suffering from voice disabilities have limited access to currently available automation technologies that operate through voice commands. To address this issue, an alternative voice recognition approach is essential without directly monitoring the audio signals generated from the vocal cord. In this work, the design of a chemically reactive and conductive sponge is reported to create an underwater vibration sensor with a fast response time and high sensitivity, through orthogonal modulation of conductivity (40–2150 kΩ), water repellence (0°–154°) and mechanical properties (0.32–2.63 MPa). This class of porous sponge sensors enables the identification of subtle water waves generated at the air–water interface and extends its utility to detecting a variety of locomotion (squatting, jumping, walking, etc.), as well as automated voice recognition using a deep learning model without direct contact with the human body. Overall, this underwater vibration sensor provides a novel basis for remote interaction with automated technologies, which finds use in medical diagnostics, human-machine interfaces, and underwater communication systems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202419049","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals suffering from voice disabilities have limited access to currently available automation technologies that operate through voice commands. To address this issue, an alternative voice recognition approach is essential without directly monitoring the audio signals generated from the vocal cord. In this work, the design of a chemically reactive and conductive sponge is reported to create an underwater vibration sensor with a fast response time and high sensitivity, through orthogonal modulation of conductivity (40–2150 kΩ), water repellence (0°–154°) and mechanical properties (0.32–2.63 MPa). This class of porous sponge sensors enables the identification of subtle water waves generated at the air–water interface and extends its utility to detecting a variety of locomotion (squatting, jumping, walking, etc.), as well as automated voice recognition using a deep learning model without direct contact with the human body. Overall, this underwater vibration sensor provides a novel basis for remote interaction with automated technologies, which finds use in medical diagnostics, human-machine interfaces, and underwater communication systems.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.