Dynamic Self‐Healing of the Reconstructed Phase in Perovskite Oxides for Efficient and Stable Electrocatalytic OER

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-11-16 DOI:10.1002/smll.202407851
Yiyue Zhai, Xiangrong Ren, Jing Zhang, Tao Gan, Na Yang, Bolun Wang, Shengzhong (Frank) Liu
{"title":"Dynamic Self‐Healing of the Reconstructed Phase in Perovskite Oxides for Efficient and Stable Electrocatalytic OER","authors":"Yiyue Zhai, Xiangrong Ren, Jing Zhang, Tao Gan, Na Yang, Bolun Wang, Shengzhong (Frank) Liu","doi":"10.1002/smll.202407851","DOIUrl":null,"url":null,"abstract":"Neither electrocatalytic activity nor structural stability is inconsequential in water electrolysis. Unfortunately, they have to be compromised in practice, especially in the anodic redox chemistry of lattice oxygen. Herein, the discovery of a La<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ce<jats:italic><jats:sub>x</jats:sub></jats:italic>FeO<jats:sub>3</jats:sub> perovskite is presented which shows both good stability and high catalytic activity. Using advanced <jats:italic>operando</jats:italic> characterizations, it is identified that the self‐healing evolution of the La<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ce<jats:italic><jats:sub>x</jats:sub></jats:italic>FeO<jats:sub>3</jats:sub> perovskite plays a key role during water oxidation in the lattice oxygen‐mediated mechanism (LOM) pathway. Unlike irreversible reconstruction, the formation of reconstructed active‐phase <jats:italic>α</jats:italic>‐FeOOH is reversed by re‐crystallization of surface La<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ce<jats:italic><jats:sub>x</jats:sub></jats:italic>FeO<jats:sub>3</jats:sub> upon return to noncatalytic conditions. The self‐healing transformation of the <jats:italic>α</jats:italic>‐FeOOH termination layer on the stable La<jats:sub>1−</jats:sub><jats:italic><jats:sub>x</jats:sub></jats:italic>Ce<jats:italic><jats:sub>x</jats:sub></jats:italic>FeO<jats:sub>3</jats:sub> core imparts remarkable long‐term stability as well as excellent electrocatalytic performance. As a result, a composition La<jats:sub>0.9</jats:sub>Ce<jats:sub>0.1</jats:sub>FeO<jats:sub>3</jats:sub>@FeOOH is designed that exhibits ultralow overpotentials of 257 and 312 mV to achieve 10 and 100 mA cm<jats:sup>−2</jats:sup>, respectively. The findings provide insight into self‐healing behavior toward engineering perovskite oxides for efficient and stable oxygen electrocatalysis.","PeriodicalId":228,"journal":{"name":"Small","volume":"247 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407851","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Neither electrocatalytic activity nor structural stability is inconsequential in water electrolysis. Unfortunately, they have to be compromised in practice, especially in the anodic redox chemistry of lattice oxygen. Herein, the discovery of a La1−xCexFeO3 perovskite is presented which shows both good stability and high catalytic activity. Using advanced operando characterizations, it is identified that the self‐healing evolution of the La1−xCexFeO3 perovskite plays a key role during water oxidation in the lattice oxygen‐mediated mechanism (LOM) pathway. Unlike irreversible reconstruction, the formation of reconstructed active‐phase α‐FeOOH is reversed by re‐crystallization of surface La1−xCexFeO3 upon return to noncatalytic conditions. The self‐healing transformation of the α‐FeOOH termination layer on the stable La1−xCexFeO3 core imparts remarkable long‐term stability as well as excellent electrocatalytic performance. As a result, a composition La0.9Ce0.1FeO3@FeOOH is designed that exhibits ultralow overpotentials of 257 and 312 mV to achieve 10 and 100 mA cm−2, respectively. The findings provide insight into self‐healing behavior toward engineering perovskite oxides for efficient and stable oxygen electrocatalysis.

Abstract Image

过氧化物中重建相的动态自愈合,实现高效稳定的电催化 OER
在水电解过程中,电催化活性和结构稳定性都不是无关紧要的。遗憾的是,在实际应用中,特别是在晶格氧的阳极氧化还原化学反应中,它们不得不受到影响。本文介绍了一种 La1-xCexFeO3 包晶体的发现,它既具有良好的稳定性,又具有很高的催化活性。通过先进的运算表征,发现 La1-xCexFeO3 包晶体的自愈演化在晶格氧介导机制(LOM)的水氧化过程中发挥了关键作用。与不可逆重构不同,当回到非催化条件时,重构的活性相 α-FeOOH 的形成会通过表面 La1-xCexFeO3 的再结晶而逆转。稳定的 La1-xCexFeO3 内核上的α-FeOOH 终止层的自愈合转变不仅具有显著的长期稳定性,而且具有优异的电催化性能。因此,设计出的 La0.9Ce0.1FeO3@FeOOH 成分可显示出 257 和 312 mV 的超低过电位,分别达到 10 和 100 mA cm-2。这些研究结果为实现高效稳定的氧电催化包晶氧化物工程的自愈行为提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信