{"title":"Enhancing zT in Organic Thermoelectric Materials through Nanoscale Local Control Crystallization","authors":"Gabriele Calabrese, Raimondo Cecchini, Denis Gentili, Diego Marini, Matteo Ferri, Fulvio Mancarella, Luisa Barba, Massimiliano Cavallini, Vittorio Morandi, Fabiola Liscio","doi":"10.1021/acsnano.4c10801","DOIUrl":null,"url":null,"abstract":"Organic thermoelectric materials are promising for wearable heating and cooling devices, as well as near-room-temperature energy generation, due to their nontoxicity, abundance, low cost, and flexibility. However, their primary challenge preventing widespread use is their reduced figure of merit (zT) caused by low electrical conductivity. This study presents a method to enhance the thermoelectric performance of solution-processable organic materials through confined crystallization using the lithographically controlled wetting (LCW) technique. Using PEDOT as a benchmark, we demonstrate that controlled crystallization at the nanoscale improves electrical conductivity by optimizing chain packing and grain morphology. Structural characterizations reveal the formation of a highly compact PEDOT arrangement, achieved through a combination of confined crystallization and DMSO post-treatment, leading to a 4-fold increase in the power factor compared to spin-coated films. This approach also reduces the thermal conductivity dependence on electrical conductivity, improving the zT by up to 260%. The LCW technique, compatible with large-area and flexible substrates, offers a simple, green, and low-cost method to boost the performance of organic thermoelectrics, advancing the potential for sustainable energy solutions and advanced organic electronic devices.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"197 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c10801","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic thermoelectric materials are promising for wearable heating and cooling devices, as well as near-room-temperature energy generation, due to their nontoxicity, abundance, low cost, and flexibility. However, their primary challenge preventing widespread use is their reduced figure of merit (zT) caused by low electrical conductivity. This study presents a method to enhance the thermoelectric performance of solution-processable organic materials through confined crystallization using the lithographically controlled wetting (LCW) technique. Using PEDOT as a benchmark, we demonstrate that controlled crystallization at the nanoscale improves electrical conductivity by optimizing chain packing and grain morphology. Structural characterizations reveal the formation of a highly compact PEDOT arrangement, achieved through a combination of confined crystallization and DMSO post-treatment, leading to a 4-fold increase in the power factor compared to spin-coated films. This approach also reduces the thermal conductivity dependence on electrical conductivity, improving the zT by up to 260%. The LCW technique, compatible with large-area and flexible substrates, offers a simple, green, and low-cost method to boost the performance of organic thermoelectrics, advancing the potential for sustainable energy solutions and advanced organic electronic devices.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.