Interfacial Assembly of Peptide Carbon Dot Hybrids Enables Photoinduced Electron Transfer with Improved Photoresponse

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pramita Mondal, Umesh, Niladri Hazra, Joydeep Datta, Sharmistha De Dalui, Anashmita Ghosh, Somobrata Acharya, Santanu Bhattacharya
{"title":"Interfacial Assembly of Peptide Carbon Dot Hybrids Enables Photoinduced Electron Transfer with Improved Photoresponse","authors":"Pramita Mondal, Umesh, Niladri Hazra, Joydeep Datta, Sharmistha De Dalui, Anashmita Ghosh, Somobrata Acharya, Santanu Bhattacharya","doi":"10.1021/acs.langmuir.4c03597","DOIUrl":null,"url":null,"abstract":"Assemblies at the interface represent a powerful tool for integrating organic and inorganic components into hybrid nanostructures. Carbon dots are both excellent electron donors and acceptors, offering opportunities for their potential uses in light-harvesting applications. To further improve their functions, integration of acceptor carbon dots into donor organic nanostructures is of great interest for improving photophysical properties useful for photoinduced electron transfer. Here, a one-step protocol for the interfacial assembly of a two-component hybrid consisting of carbon dots and perylene containing an <span>l</span>-phenylalanine-based dipeptide through noncovalent bonding is developed. The perylene-containing dipeptide derivative formed micrometer-long nanofibers on the water surface through J-aggregate formation. Spectroscopic studies reveal photoluminescence quenching of the donor dipeptide upon increasing the concentration of acceptor carbon dots in the hybrid, suggesting photoinduced electron transfer from the donor peptides to acceptor carbon dots. The hybrids integrated in a planar device architecture show a significantly improved photoresponse because of the favorable interactions between the donor–acceptor components. The one-step integration of donor–acceptor hybrids on the water surface offers opportunities for light harvesting and related applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03597","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Assemblies at the interface represent a powerful tool for integrating organic and inorganic components into hybrid nanostructures. Carbon dots are both excellent electron donors and acceptors, offering opportunities for their potential uses in light-harvesting applications. To further improve their functions, integration of acceptor carbon dots into donor organic nanostructures is of great interest for improving photophysical properties useful for photoinduced electron transfer. Here, a one-step protocol for the interfacial assembly of a two-component hybrid consisting of carbon dots and perylene containing an l-phenylalanine-based dipeptide through noncovalent bonding is developed. The perylene-containing dipeptide derivative formed micrometer-long nanofibers on the water surface through J-aggregate formation. Spectroscopic studies reveal photoluminescence quenching of the donor dipeptide upon increasing the concentration of acceptor carbon dots in the hybrid, suggesting photoinduced electron transfer from the donor peptides to acceptor carbon dots. The hybrids integrated in a planar device architecture show a significantly improved photoresponse because of the favorable interactions between the donor–acceptor components. The one-step integration of donor–acceptor hybrids on the water surface offers opportunities for light harvesting and related applications.

Abstract Image

多肽碳点杂化物的界面组装可实现光诱导电子转移并改善光响应
界面组装是将有机和无机成分集成到混合纳米结构中的有力工具。碳点既是出色的电子供体,也是出色的受体,这为它们在光收集应用中的潜在用途提供了机会。为了进一步改善其功能,将受体碳点集成到供体有机纳米结构中,对于改善光诱导电子转移的光物理特性具有重要意义。在此,我们开发了一种一步法方案,通过非共价键合,在界面上组装由碳点和含对苯丙氨酸二肽的过烯烃组成的双组分混合体。含有二肽的过烯烃衍生物通过 J-聚集体的形成在水面上形成了微米长的纳米纤维。光谱研究显示,当混合物中的受体碳点浓度增加时,供体二肽会发生光致发光淬灭,这表明光诱导电子从供体肽转移到受体碳点。由于供体-受体成分之间存在有利的相互作用,集成在平面器件结构中的混合体显示出明显改善的光响应。在水面上一步集成供体-受体混合体为光收集和相关应用提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信