Ruonan Li , Chongyao Wang , Xin Wang , Jiaxin Luo , Dailin Yin , Miao Wen , Lijun Hao , Jianwei Tan , Yunshan Ge
{"title":"On-road measurement of post-catalyst ammonia emissions from gasoline and hybrid vehicles using quantum cascade laser detector","authors":"Ruonan Li , Chongyao Wang , Xin Wang , Jiaxin Luo , Dailin Yin , Miao Wen , Lijun Hao , Jianwei Tan , Yunshan Ge","doi":"10.1016/j.envpol.2024.125319","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia emissions from gasoline vehicles have been confirmed an essential precursor of urban secondary aerosols. To more comprehensively understand the formation mechanisms and better control vehicle-related ammonia, this paper measured the on-road ammonia emissions from six conventional and four hybrid vehicles using a state-of-the-art Quantum Cascade Laser analyzer on urban, rural, and highway routes. The test vehicles emitted 0.01–4.27 mg/km of ammonia emissions, with a fleet average of 1.04 mg/km. Compared to the previous laboratory tests, the results of this study were low because of the high emission standards of the vehicles and the near-zero emissions during rural driving. Most test vehicles showed high ammonia emissions during engine warm-up, while some vehicles also had ammonia peaks during dynamic highway driving. On average, hybrid vehicles emitted 60.7% less ammonia emissions than the conventional candidates. It is confirmed that ammonia was formed when incomplete oxidation products presented on a warm catalyst. Engine warm-up, dynamic highway driving, particulate filter regeneration, and hybrid engine re-starting could be important sources. It is hypothesized that the ammonia formed on the upstream catalyst could be consumed by the downstream catalyst at moderate catalyst temperature, resulting in the near-zero ammonia emissions during rural driving.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"364 ","pages":"Article 125319"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749124020360","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia emissions from gasoline vehicles have been confirmed an essential precursor of urban secondary aerosols. To more comprehensively understand the formation mechanisms and better control vehicle-related ammonia, this paper measured the on-road ammonia emissions from six conventional and four hybrid vehicles using a state-of-the-art Quantum Cascade Laser analyzer on urban, rural, and highway routes. The test vehicles emitted 0.01–4.27 mg/km of ammonia emissions, with a fleet average of 1.04 mg/km. Compared to the previous laboratory tests, the results of this study were low because of the high emission standards of the vehicles and the near-zero emissions during rural driving. Most test vehicles showed high ammonia emissions during engine warm-up, while some vehicles also had ammonia peaks during dynamic highway driving. On average, hybrid vehicles emitted 60.7% less ammonia emissions than the conventional candidates. It is confirmed that ammonia was formed when incomplete oxidation products presented on a warm catalyst. Engine warm-up, dynamic highway driving, particulate filter regeneration, and hybrid engine re-starting could be important sources. It is hypothesized that the ammonia formed on the upstream catalyst could be consumed by the downstream catalyst at moderate catalyst temperature, resulting in the near-zero ammonia emissions during rural driving.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.