{"title":"Time-varying copula-based compound flood risk assessment of extreme rainfall and high water level under a non-stationary environment","authors":"Mingming Song, Jianyun Zhang, Yanli Liu, Cuishan Liu, Zhenxin Bao, Junliang Jin, Ruimin He, Guodong Bian, Guoqing Wang","doi":"10.1111/jfr3.13032","DOIUrl":null,"url":null,"abstract":"<p>Quantifying flood risk depends on accurate probability estimation, which is challenging due to non-stationarity and the combined effects of multiple factors in a changing environment. The threat of compound flood risks may spread from coastal areas to inland basins, which have received less attention. In this study, a framework based on time-varying copulas was introduced for the treatment of compound flood risk and bivariate design in non-stationary environments. Archimedean copulas were developed to diagnose the non-stationary trends of flood risk. Return periods, average annual reliabilities, and bivariate designs were estimated. Model uncertainty was analyzed by comparing the results for stationary and non-stationary conditions. The case study investigated the extreme rainfall and water level series from the Qinhuai River Basin and the Yangtze River in China. The results showed that marginal distributions and correlations are non-stationary in all bivariate combinations. Ignoring composite effects may lead to inappropriate quantification of flood risk. Excluding non-stationarity may lead to risk over or underestimation. It showed the limitations of the 1-day scale and quantified the uncertainty of non-stationary models. This study provided a flood risk assessment framework in a changing environment and a risk-based design technique, which is essential for climate change adaptation and water management.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"17 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13032","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quantifying flood risk depends on accurate probability estimation, which is challenging due to non-stationarity and the combined effects of multiple factors in a changing environment. The threat of compound flood risks may spread from coastal areas to inland basins, which have received less attention. In this study, a framework based on time-varying copulas was introduced for the treatment of compound flood risk and bivariate design in non-stationary environments. Archimedean copulas were developed to diagnose the non-stationary trends of flood risk. Return periods, average annual reliabilities, and bivariate designs were estimated. Model uncertainty was analyzed by comparing the results for stationary and non-stationary conditions. The case study investigated the extreme rainfall and water level series from the Qinhuai River Basin and the Yangtze River in China. The results showed that marginal distributions and correlations are non-stationary in all bivariate combinations. Ignoring composite effects may lead to inappropriate quantification of flood risk. Excluding non-stationarity may lead to risk over or underestimation. It showed the limitations of the 1-day scale and quantified the uncertainty of non-stationary models. This study provided a flood risk assessment framework in a changing environment and a risk-based design technique, which is essential for climate change adaptation and water management.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.