Urs Aeberhard, Nelly Natsch, Andrin Schneider, Simon Jérôme Zeder, Hamilton Carrillo-Nuñez, Balthasar Blülle, Beat Ruhstaller
{"title":"Multi-Scale Simulation of Reverse-Bias Breakdown in All-Perovskite Tandem Photovoltaic Modules under Partial Shading Conditions","authors":"Urs Aeberhard, Nelly Natsch, Andrin Schneider, Simon Jérôme Zeder, Hamilton Carrillo-Nuñez, Balthasar Blülle, Beat Ruhstaller","doi":"10.1002/solr.202400492","DOIUrl":null,"url":null,"abstract":"<p>Herein, a multi-scale simulation approach to quantify the impact of nonuniformities in cell-level performance on the photovoltaic characteristics of monolithically interconnected large-area all-perovskite tandem modules under partial shading conditions is presented, addressing a crucial aspect of the up-scaling challenge for this promising photovoltaic technology. To this end, current–voltage characteristics of small-area all-perovskite tandem solar cells are obtained for dark and illuminated cases from a calibrated optoelectronic device model using drift–diffusion simulation coupled to a quantum transport formalism for the band-to-band tunneling underlying the Zener breakdown. These current–voltage curves are computed for varying density of mobile ions and subsequently used as local 1D coupling laws connecting the 2D electrodes in a quasi-3D large-area finite-element simulation approach that then provides the module characteristics under consideration of spatial variation in active area quality related to mobile ion density. The simulation reveals the appearance of localized current hot spots for the case where the shaded cell is strongly reverse biased.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"8 21","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/solr.202400492","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400492","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, a multi-scale simulation approach to quantify the impact of nonuniformities in cell-level performance on the photovoltaic characteristics of monolithically interconnected large-area all-perovskite tandem modules under partial shading conditions is presented, addressing a crucial aspect of the up-scaling challenge for this promising photovoltaic technology. To this end, current–voltage characteristics of small-area all-perovskite tandem solar cells are obtained for dark and illuminated cases from a calibrated optoelectronic device model using drift–diffusion simulation coupled to a quantum transport formalism for the band-to-band tunneling underlying the Zener breakdown. These current–voltage curves are computed for varying density of mobile ions and subsequently used as local 1D coupling laws connecting the 2D electrodes in a quasi-3D large-area finite-element simulation approach that then provides the module characteristics under consideration of spatial variation in active area quality related to mobile ion density. The simulation reveals the appearance of localized current hot spots for the case where the shaded cell is strongly reverse biased.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.