{"title":"Chlorinated Polythiophene-Based Donors with Reduced Energy Loss for Organic Solar Cells","authors":"Huixue Li, Junzhen Ren, Lijiao Ma, Zhihao Chen, Yue Yu, Jianqiu Wang, Shaoqing Zhang","doi":"10.1002/cjoc.202400793","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The industrialization of organic solar cells (OSCs) faces challenges due to complex synthesis routes and high costs of organic photovoltaic materials. To address this, we designed and synthesized a series of polythiophene-based donor materials, PTVT-T-<i>x</i>Cl (20%Cl, 50%Cl and 100%Cl), by introducing different degrees of chlorine substitution within their conjugated skeletons. The incorporation of chlorine atoms does not change the planar conformation of the conjugated main chain of the control polymer, PTVT-T, but effectively reduces their HOMO energy levels (≤ –5.3 eV) and alters the crystallinity of the polymers. In addition, when preparing OSC by blending with non-fused electron acceptor A4T-16, the non-radiative energy loss of the three photovoltaic devices gradually decreased with the increase of chlorine content (0.343, 0.278 and 0.189 eV, respectively). Notably, PTVT-T-20%Cl exhibited a more moderate nanoscale phase separation with the acceptor, leading to efficient exciton dissociation, lower bimolecular recombination, and thus a favorable current in the OSCs. Consequently, the photovoltaic device based on PTVT-T-20%Cl:A4T-16 achieved a remarkable photovoltaic efficiency of 11.8%. In addition, the PTVT-T-xCl series polymers show much lower material-only-cost (MOC) values than the other reported photoactive material systems. This work provides the way for the development of low-cost photovoltaic materials and the industrial application of OSC, overcoming previous limitations posed by high energy losses in polythiophene-based donors.</p>\n <p>\n </p>\n </div>","PeriodicalId":151,"journal":{"name":"Chinese Journal of Chemistry","volume":"42 24","pages":"3405-3413"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjoc.202400793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The industrialization of organic solar cells (OSCs) faces challenges due to complex synthesis routes and high costs of organic photovoltaic materials. To address this, we designed and synthesized a series of polythiophene-based donor materials, PTVT-T-xCl (20%Cl, 50%Cl and 100%Cl), by introducing different degrees of chlorine substitution within their conjugated skeletons. The incorporation of chlorine atoms does not change the planar conformation of the conjugated main chain of the control polymer, PTVT-T, but effectively reduces their HOMO energy levels (≤ –5.3 eV) and alters the crystallinity of the polymers. In addition, when preparing OSC by blending with non-fused electron acceptor A4T-16, the non-radiative energy loss of the three photovoltaic devices gradually decreased with the increase of chlorine content (0.343, 0.278 and 0.189 eV, respectively). Notably, PTVT-T-20%Cl exhibited a more moderate nanoscale phase separation with the acceptor, leading to efficient exciton dissociation, lower bimolecular recombination, and thus a favorable current in the OSCs. Consequently, the photovoltaic device based on PTVT-T-20%Cl:A4T-16 achieved a remarkable photovoltaic efficiency of 11.8%. In addition, the PTVT-T-xCl series polymers show much lower material-only-cost (MOC) values than the other reported photoactive material systems. This work provides the way for the development of low-cost photovoltaic materials and the industrial application of OSC, overcoming previous limitations posed by high energy losses in polythiophene-based donors.
期刊介绍:
The Chinese Journal of Chemistry is an international forum for peer-reviewed original research results in all fields of chemistry. Founded in 1983 under the name Acta Chimica Sinica English Edition and renamed in 1990 as Chinese Journal of Chemistry, the journal publishes a stimulating mixture of Accounts, Full Papers, Notes and Communications in English.