{"title":"Efficient numerical approximations for a nonconservative nonlinear Schrödinger equation appearing in wind-forced ocean waves","authors":"Agissilaos Athanassoulis, Theodoros Katsaounis, Irene Kyza","doi":"10.1111/sapm.12774","DOIUrl":null,"url":null,"abstract":"<p>We consider a nonconservative nonlinear Schrödinger equation (NCNLS) with time-dependent coefficients, inspired by a water waves problem. This problem does not have mass or energy conservation, but instead mass and energy change in time under explicit balance laws. In this paper, we extend to the particular NCNLS two numerical schemes which are known to conserve energy and mass in the discrete level for the cubic nonlinear Schrödinger equation. Both schemes are second-order accurate in time, and we prove that their extensions satisfy discrete versions of the mass and energy balance laws for the NCNLS. The first scheme is a relaxation scheme that is linearly implicit. The other scheme is a modified Delfour–Fortin–Payre scheme, and it is fully implicit. Numerical results show that both schemes capture robustly the correct values of mass and energy, even in strongly nonconservative problems. We finally compare the two numerical schemes and discuss their performance.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12774","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a nonconservative nonlinear Schrödinger equation (NCNLS) with time-dependent coefficients, inspired by a water waves problem. This problem does not have mass or energy conservation, but instead mass and energy change in time under explicit balance laws. In this paper, we extend to the particular NCNLS two numerical schemes which are known to conserve energy and mass in the discrete level for the cubic nonlinear Schrödinger equation. Both schemes are second-order accurate in time, and we prove that their extensions satisfy discrete versions of the mass and energy balance laws for the NCNLS. The first scheme is a relaxation scheme that is linearly implicit. The other scheme is a modified Delfour–Fortin–Payre scheme, and it is fully implicit. Numerical results show that both schemes capture robustly the correct values of mass and energy, even in strongly nonconservative problems. We finally compare the two numerical schemes and discuss their performance.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.