Rigid lid limit in shallow water over a flat bottom

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Benjamin Melinand
{"title":"Rigid lid limit in shallow water over a flat bottom","authors":"Benjamin Melinand","doi":"10.1111/sapm.12773","DOIUrl":null,"url":null,"abstract":"<p>We perform the so-called rigid lid limit on different shallow water models such as the abcd Bousssinesq systems or the Green–Naghdi equations. To do so, we consider an appropriate nondimensionalization of these models where two small parameters are involved: the shallowness parameter <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math> and a parameter <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\epsilon$</annotation>\n </semantics></math> which can be interpreted as a Froude number. When the parameter <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\epsilon$</annotation>\n </semantics></math> tends to zero, the surface deformation formally goes to the rest state, hence the name rigid lid limit. We carefully study this limit for different topologies. We also provide rates of convergence with respect to <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\epsilon$</annotation>\n </semantics></math> and careful attention is given to the dependence on the shallowness parameter <span></span><math>\n <semantics>\n <mi>μ</mi>\n <annotation>$\\mu$</annotation>\n </semantics></math>.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12773","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We perform the so-called rigid lid limit on different shallow water models such as the abcd Bousssinesq systems or the Green–Naghdi equations. To do so, we consider an appropriate nondimensionalization of these models where two small parameters are involved: the shallowness parameter μ $\mu$ and a parameter ε $\epsilon$ which can be interpreted as a Froude number. When the parameter ε $\epsilon$ tends to zero, the surface deformation formally goes to the rest state, hence the name rigid lid limit. We carefully study this limit for different topologies. We also provide rates of convergence with respect to ε $\epsilon$ and careful attention is given to the dependence on the shallowness parameter μ $\mu$ .

刚性盖子在平底浅水中的限制
我们对不同的浅水模型(如 abcd Bousssinesq 系统或 Green-Naghdi 方程)进行了所谓的刚性盖限制。为此,我们考虑对这些模型进行适当的非维度化,其中涉及两个小参数:浅度参数 μ $\mu$ 和参数 ε $\epsilon$ ,后者可解释为弗劳德数。当参数 ε $\epsilon$ 趋于零时,表面变形正式进入静止状态,因此被称为刚性盖极限。我们针对不同的拓扑结构仔细研究了这一极限。我们还提供了相对于 ε $\epsilon$ 的收敛率,并仔细关注了对浅度参数 μ $\mu$ 的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信