Singularity formation for the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Yanbo Hu, Houbin Guo
{"title":"Singularity formation for the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime","authors":"Yanbo Hu,&nbsp;Houbin Guo","doi":"10.1111/sapm.12775","DOIUrl":null,"url":null,"abstract":"<p>We study the formation of singularities of smooth solutions to the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime. The system is in the spherically symmetric form, and its coefficients and nonhomogeneous terms contain a parameter reflecting the mass of the black hole, which makes it highly nonlinear and complicated. To overcome the influence of the mass parameter of black hole, we introduce a pair of suitable auxiliary variables related to it and derive their characteristic decompositions to establish the estimates of the smooth solution. We show that, for a kind of initial data, the smooth solution develops singularity in finite time and the mass-energy density itself approaches infinity at the blowup point.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12775","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the formation of singularities of smooth solutions to the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime. The system is in the spherically symmetric form, and its coefficients and nonhomogeneous terms contain a parameter reflecting the mass of the black hole, which makes it highly nonlinear and complicated. To overcome the influence of the mass parameter of black hole, we introduce a pair of suitable auxiliary variables related to it and derive their characteristic decompositions to establish the estimates of the smooth solution. We show that, for a kind of initial data, the smooth solution develops singularity in finite time and the mass-energy density itself approaches infinity at the blowup point.

施瓦兹柴尔德时空中查普利金气体相对论欧拉方程的奇点形成
我们研究了施瓦兹柴尔德时空中查普利金气体相对论欧拉方程光滑解奇点的形成。该系统为球面对称形式,其系数和非均质项包含一个反映黑洞质量的参数,这使得它变得高度非线性和复杂。为了克服黑洞质量参数的影响,我们引入了与之相关的一对合适的辅助变量,并推导出它们的特征分解,从而建立平稳解的估计值。我们的研究表明,对于某种初始数据,光滑解在有限时间内会出现奇点,并且在炸毁点的质能密度本身接近无穷大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信