{"title":"Singularity formation for the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime","authors":"Yanbo Hu, Houbin Guo","doi":"10.1111/sapm.12775","DOIUrl":null,"url":null,"abstract":"<p>We study the formation of singularities of smooth solutions to the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime. The system is in the spherically symmetric form, and its coefficients and nonhomogeneous terms contain a parameter reflecting the mass of the black hole, which makes it highly nonlinear and complicated. To overcome the influence of the mass parameter of black hole, we introduce a pair of suitable auxiliary variables related to it and derive their characteristic decompositions to establish the estimates of the smooth solution. We show that, for a kind of initial data, the smooth solution develops singularity in finite time and the mass-energy density itself approaches infinity at the blowup point.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12775","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study the formation of singularities of smooth solutions to the relativistic Euler equations of Chaplygin gases in Schwarzschild spacetime. The system is in the spherically symmetric form, and its coefficients and nonhomogeneous terms contain a parameter reflecting the mass of the black hole, which makes it highly nonlinear and complicated. To overcome the influence of the mass parameter of black hole, we introduce a pair of suitable auxiliary variables related to it and derive their characteristic decompositions to establish the estimates of the smooth solution. We show that, for a kind of initial data, the smooth solution develops singularity in finite time and the mass-energy density itself approaches infinity at the blowup point.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.