{"title":"Impact of biochar application on nitrous oxide and methane emissions in rainfed cropping systems within a semiarid region","authors":"Jie Zhou, Shanchao Yue, Qiang Liu, Xiang Zeng, Jingrong Song, Shushang Bao, Bosen Guo, Yufang Shen","doi":"10.1002/agj2.21711","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the impact of biochar on <i>Zea mays</i> L. yield and greenhouse gas (GHG) emissions in rainfed maize fields in Northwest China. Four treatments were compared: unmodified control (CK), conventional nitrogen (BC0), nitrogen + 20 t ha<sup>−1</sup> biochar (BC20), and nitrogen + 50 t ha<sup>−1</sup> biochar (BC50). Results showed significant increases in grain yields with BC20 (11.1%) and BC50 (8.6%) compared to BC0. Emissions of nitrous oxide (N<sub>2</sub>O) were reduced by 14.0%–19.5% in biochar treatments compared to CK. Methane (CH<sub>4</sub>) uptake by the fields, acting as CH<sub>4</sub> sinks, was not significantly impacted by biochar treatments, clarifying that the biochar did not alter the farmland's inherent ability to uptake CH<sub>4</sub>. Over 2 years, the addition of nitrogen fertilizer and biochar did not markedly alter cumulative CH<sub>4</sub> uptake. Both net greenhouse gas (NGHG) emissions and yield-scaled GHG intensity (NGHGI) were lowered by 16.7%–23.5% and 24.2%–30.3%, respectively, with biochar application. The integration of biochar effectively mitigated the GHG emission enhancement due to nitrogen fertilizer, mainly by decreasing nitrogen oxide emissions and boosting maize yields. Thus, proper biochar application would be an economical and effective strategy for mitigating gas emissions from rainfed maize cropping system in semiarid regions.</p>","PeriodicalId":7522,"journal":{"name":"Agronomy Journal","volume":"116 6","pages":"3007-3020"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agj2.21711","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of biochar on Zea mays L. yield and greenhouse gas (GHG) emissions in rainfed maize fields in Northwest China. Four treatments were compared: unmodified control (CK), conventional nitrogen (BC0), nitrogen + 20 t ha−1 biochar (BC20), and nitrogen + 50 t ha−1 biochar (BC50). Results showed significant increases in grain yields with BC20 (11.1%) and BC50 (8.6%) compared to BC0. Emissions of nitrous oxide (N2O) were reduced by 14.0%–19.5% in biochar treatments compared to CK. Methane (CH4) uptake by the fields, acting as CH4 sinks, was not significantly impacted by biochar treatments, clarifying that the biochar did not alter the farmland's inherent ability to uptake CH4. Over 2 years, the addition of nitrogen fertilizer and biochar did not markedly alter cumulative CH4 uptake. Both net greenhouse gas (NGHG) emissions and yield-scaled GHG intensity (NGHGI) were lowered by 16.7%–23.5% and 24.2%–30.3%, respectively, with biochar application. The integration of biochar effectively mitigated the GHG emission enhancement due to nitrogen fertilizer, mainly by decreasing nitrogen oxide emissions and boosting maize yields. Thus, proper biochar application would be an economical and effective strategy for mitigating gas emissions from rainfed maize cropping system in semiarid regions.
期刊介绍:
After critical review and approval by the editorial board, AJ publishes articles reporting research findings in soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
Notes are published about apparatus, observations, and experimental techniques. Observations usually are limited to studies and reports of unrepeatable phenomena or other unique circumstances. Review and interpretation papers are also published, subject to standard review. Contributions to the Forum section deal with current agronomic issues and questions in brief, thought-provoking form. Such papers are reviewed by the editor in consultation with the editorial board.