Perturbed conformal invariance and Mei adiabatic invariants of the generalized perturbed Hamiltonian systems with additional terms

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Haseeb Ur Rehman, Tooba Feroze
{"title":"Perturbed conformal invariance and Mei adiabatic invariants of the generalized perturbed Hamiltonian systems with additional terms","authors":"Haseeb Ur Rehman,&nbsp;Tooba Feroze","doi":"10.1111/sapm.12766","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the relationship between perturbed conformal invariance and Mei symmetry in the generalized perturbed Hamiltonian systems with additional terms. A necessary and sufficient condition is derived to determine whether perturbed conformal invariance can be considered an approximate Mei symmetry. Furthermore, the Mei adiabatic invariants are also obtained. Lastly, an example is presented to demonstrate the key findings.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12766","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the relationship between perturbed conformal invariance and Mei symmetry in the generalized perturbed Hamiltonian systems with additional terms. A necessary and sufficient condition is derived to determine whether perturbed conformal invariance can be considered an approximate Mei symmetry. Furthermore, the Mei adiabatic invariants are also obtained. Lastly, an example is presented to demonstrate the key findings.

有附加项的广义扰动哈密顿系统的扰动保角不变性和梅绝热不变性
本研究探讨了带有附加项的广义扰动哈密顿系统中扰动保角不变性与梅对称性之间的关系。得出了一个必要和充分条件,以确定扰动共形不变性是否可被视为近似的梅对称性。此外,还得到了梅氏绝热不变量。最后,通过一个例子展示了主要发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信