Monitoring Salt Domes Used for Energy Storage With Microseismicity: Insights for a Carbon-Neutral Future

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Joses Omojola, Patricia Persaud
{"title":"Monitoring Salt Domes Used for Energy Storage With Microseismicity: Insights for a Carbon-Neutral Future","authors":"Joses Omojola,&nbsp;Patricia Persaud","doi":"10.1029/2024GC011573","DOIUrl":null,"url":null,"abstract":"<p>Underground storage in geologic formations will play a key role in the energy transition by providing low-cost storage of renewable fuels such as hydrogen. The sealing qualities of caverns leached in salt and availability of domal salt bodies make them ideal for energy storage. However, unstable boundary shear zones of anomalous friable salt can enhance internal shearing and pose a structural hazard to storage operations. Considering the indistinct nature of internal salt heterogeneities when imaged with conventional techniques such as reflection seismic surveys, we develop a method to map shear zones using seismicity patterns in the US Gulf Coast, the region with the world's largest underground crude oil emergency supply. We developed and finetuned a machine learning algorithm using tectonic and local microearthquakes. The finetuned model was applied to detect microearthquakes in a 12-month long nodal seismic dataset from the Sorrento salt dome. Clustered microearthquake locations reveal the three-dimensional geometry of two anomalous salt shear zones and their orientations were determined using probabilistic hypocenter imaging. The seismicity pattern, combined with borehole pressure measurements, and cavern sonar surveys, shows the spatiotemporal evolution of cavern shapes within the salt dome. We describe how shear zone seismicity contributed to a cavern well failure and gas release incident that occurred during monitoring. Our findings show that caverns placed close to shear zones are more susceptible to structural damage. We propose a non-invasive technique for mapping hazards related to internal salt dome deformation that can be employed in high-noise industrial settings to characterize storage facilities.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011573","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Underground storage in geologic formations will play a key role in the energy transition by providing low-cost storage of renewable fuels such as hydrogen. The sealing qualities of caverns leached in salt and availability of domal salt bodies make them ideal for energy storage. However, unstable boundary shear zones of anomalous friable salt can enhance internal shearing and pose a structural hazard to storage operations. Considering the indistinct nature of internal salt heterogeneities when imaged with conventional techniques such as reflection seismic surveys, we develop a method to map shear zones using seismicity patterns in the US Gulf Coast, the region with the world's largest underground crude oil emergency supply. We developed and finetuned a machine learning algorithm using tectonic and local microearthquakes. The finetuned model was applied to detect microearthquakes in a 12-month long nodal seismic dataset from the Sorrento salt dome. Clustered microearthquake locations reveal the three-dimensional geometry of two anomalous salt shear zones and their orientations were determined using probabilistic hypocenter imaging. The seismicity pattern, combined with borehole pressure measurements, and cavern sonar surveys, shows the spatiotemporal evolution of cavern shapes within the salt dome. We describe how shear zone seismicity contributed to a cavern well failure and gas release incident that occurred during monitoring. Our findings show that caverns placed close to shear zones are more susceptible to structural damage. We propose a non-invasive technique for mapping hazards related to internal salt dome deformation that can be employed in high-noise industrial settings to characterize storage facilities.

Abstract Image

利用微地震监测用于储能的盐穹顶:洞察碳中和的未来
地质构造中的地下储存将在能源转型中发挥关键作用,因为它能以低成本储存氢气等可再生燃料。盐浸出岩洞的密封性和穹顶盐体的可用性使其成为能源储存的理想场所。然而,异常易碎盐的不稳定边界剪切带会增强内部剪切力,对储能操作造成结构性危害。考虑到使用反射地震勘探等传统技术对盐体内部异质性成像时的模糊性,我们开发了一种利用美国墨西哥湾沿岸地震模式绘制剪切带的方法,该地区拥有世界上最大的地下原油应急供应。我们利用构造地震和局部微地震开发并微调了一种机器学习算法。经过微调的模型被用于检测索伦托盐穹 12 个月结点地震数据集中的微地震。集群微震位置揭示了两个异常盐剪切带的三维几何形状,并利用概率次中心成像确定了它们的方向。地震模式与钻孔压力测量和岩洞声纳勘测相结合,显示了盐穹顶内岩洞形状的时空演变。我们描述了剪切带地震是如何导致监测期间发生的岩洞井故障和气体释放事件的。我们的研究结果表明,靠近剪切带的岩洞更容易受到结构破坏。我们提出了一种非侵入式技术,用于绘制与盐穹顶内部变形有关的危害图,该技术可用于高噪声工业环境,以确定储藏设施的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信