Hydrodynamics of a discrete conservation law

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Patrick Sprenger, Christopher Chong, Emmanuel Okyere, Michael Herrmann, P. G. Kevrekidis, Mark A. Hoefer
{"title":"Hydrodynamics of a discrete conservation law","authors":"Patrick Sprenger,&nbsp;Christopher Chong,&nbsp;Emmanuel Okyere,&nbsp;Michael Herrmann,&nbsp;P. G. Kevrekidis,&nbsp;Mark A. Hoefer","doi":"10.1111/sapm.12767","DOIUrl":null,"url":null,"abstract":"<p>The Riemann problem for the discrete conservation law <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <msub>\n <mover>\n <mi>u</mi>\n <mo>̇</mo>\n </mover>\n <mi>n</mi>\n </msub>\n <mo>+</mo>\n <msubsup>\n <mi>u</mi>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <mn>2</mn>\n </msubsup>\n <mo>−</mo>\n <msubsup>\n <mi>u</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mn>2</mn>\n </msubsup>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$2 \\dot{u}_n + u^2_{n+1} - u^2_{n-1} = 0$</annotation>\n </semantics></math> is classified using Whitham modulation theory, a quasi-continuum approximation, and numerical simulations. A surprisingly elaborate set of solutions to this simple discrete regularization of the inviscid Burgers' equation is obtained. In addition to discrete analogs of well-known dispersive hydrodynamic solutions—rarefaction waves (RWs) and dispersive shock waves (DSWs)—additional unsteady solution families and finite-time blowup are observed. Two solution types exhibit no known conservative continuum correlates: (i) a counterpropagating DSW and RW solution separated by a symmetric, stationary shock and (ii) an unsteady shock emitting two counterpropagating periodic wavetrains with the same frequency connected to a partial DSW or an RW. Another class of solutions called traveling DSWs, (iii), consists of a partial DSW connected to a traveling wave comprised of a periodic wavetrain with a rapid transition to a constant. Portions of solutions (ii) and (iii) are interpreted as shock solutions of the Whitham modulation equations.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12767","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The Riemann problem for the discrete conservation law 2 u ̇ n + u n + 1 2 u n 1 2 = 0 $2 \dot{u}_n + u^2_{n+1} - u^2_{n-1} = 0$ is classified using Whitham modulation theory, a quasi-continuum approximation, and numerical simulations. A surprisingly elaborate set of solutions to this simple discrete regularization of the inviscid Burgers' equation is obtained. In addition to discrete analogs of well-known dispersive hydrodynamic solutions—rarefaction waves (RWs) and dispersive shock waves (DSWs)—additional unsteady solution families and finite-time blowup are observed. Two solution types exhibit no known conservative continuum correlates: (i) a counterpropagating DSW and RW solution separated by a symmetric, stationary shock and (ii) an unsteady shock emitting two counterpropagating periodic wavetrains with the same frequency connected to a partial DSW or an RW. Another class of solutions called traveling DSWs, (iii), consists of a partial DSW connected to a traveling wave comprised of a periodic wavetrain with a rapid transition to a constant. Portions of solutions (ii) and (iii) are interpreted as shock solutions of the Whitham modulation equations.

离散守恒定律的流体力学
离散守恒定律的黎曼问题 2 u ≌ n + u n + 1 2 - u n - 1 2 = 0 $2 \dot{u}_n + u^2_{n+1}- u^2_{n-1} = 0$ 是利用惠瑟姆调制理论、准连续近似和数值模拟进行分类的。对于这个简单的离散正则化布尔格斯不粘性方程,得到了一组令人惊讶的精细解。除了众所周知的离散流体力学解的离散类似解--压缩波(RWs)和离散冲击波(DSWs)之外,还观察到了额外的非稳态解系列和有限时间炸裂。有两类解没有已知的保守连续相关性:(i) 反向传播的 DSW 和 RW 解被对称的静止冲击波分隔开;(ii) 非稳态冲击波发出两个频率相同的反向传播周期性波迹,与部分 DSW 或 RW 相连。另一类解决方案称为行波 DSW,即 (iii),由部分 DSW 和行波组成,行波由快速过渡到常数的周期波列构成。解(ii)和(iii)的部分内容被解释为惠森调制方程的冲击解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信