{"title":"Stability of bound states for regularized nonlinear Schrödinger equations","authors":"John Albert, Jack Arbunich","doi":"10.1111/sapm.12780","DOIUrl":null,"url":null,"abstract":"<p>We consider the stability of bound-state solutions of a family of regularized nonlinear Schrödinger equations which were introduced by Dumas et al. as models for the propagation of laser beams. Among these bound-state solutions are ground states, which are defined as solutions of a variational problem. We give a sufficient condition for existence and orbital stability of ground states, and use it to verify that ground states exist and are stable over a wider range of nonlinearities than for the nonregularized nonlinear Schrödinger equation. We also give another sufficient and almost necessary condition for stability of general bound states, and show that some stable bound states exist which are not ground states.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12780","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the stability of bound-state solutions of a family of regularized nonlinear Schrödinger equations which were introduced by Dumas et al. as models for the propagation of laser beams. Among these bound-state solutions are ground states, which are defined as solutions of a variational problem. We give a sufficient condition for existence and orbital stability of ground states, and use it to verify that ground states exist and are stable over a wider range of nonlinearities than for the nonregularized nonlinear Schrödinger equation. We also give another sufficient and almost necessary condition for stability of general bound states, and show that some stable bound states exist which are not ground states.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.