Whitham modulation theory and the classification of solutions to the Riemann problem of the Fokas–Lenells equation

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Zhi-Jia Wu, Shou-Fu Tian
{"title":"Whitham modulation theory and the classification of solutions to the Riemann problem of the Fokas–Lenells equation","authors":"Zhi-Jia Wu,&nbsp;Shou-Fu Tian","doi":"10.1111/sapm.12779","DOIUrl":null,"url":null,"abstract":"<p>In this work, we explore the Riemann problem of the Fokas–Lenells (FL) equation given initial data in the form of a step discontinuity by employing the Whitham modulation theory. The periodic wave solutions of the FL equation are characterized by elliptic functions along with the Whitham modulation equations. Moreover, we find that the <span></span><math>\n <semantics>\n <mo>±</mo>\n <annotation>$\\pm$</annotation>\n </semantics></math> signs for the velocities of the periodic wave solutions remain unchanged during propagation. Thus, when analyzing the propagation behavior of solutions, it is necessary to separately consider the clockwise (negative velocity) and counterclockwise (positive velocity) cases. In this regard, we present the classification of the solutions to the Riemann problem of the FL equation in both clockwise and counterclockwise cases for the first time.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12779","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we explore the Riemann problem of the Fokas–Lenells (FL) equation given initial data in the form of a step discontinuity by employing the Whitham modulation theory. The periodic wave solutions of the FL equation are characterized by elliptic functions along with the Whitham modulation equations. Moreover, we find that the ± $\pm$ signs for the velocities of the periodic wave solutions remain unchanged during propagation. Thus, when analyzing the propagation behavior of solutions, it is necessary to separately consider the clockwise (negative velocity) and counterclockwise (positive velocity) cases. In this regard, we present the classification of the solutions to the Riemann problem of the FL equation in both clockwise and counterclockwise cases for the first time.

惠瑟姆调制理论与福卡斯-勒内尔斯方程黎曼问题解的分类
在这项研究中,我们利用惠瑟姆调制理论探讨了给定阶跃不连续形式初始数据的福卡斯-勒内尔斯(Fokas-Lenells,FL)方程的黎曼问题。FL 方程的周期波解与 Whitham 调制方程一起以椭圆函数为特征。此外,我们发现周期波解的速度的 ± $\pm$ 符号在传播过程中保持不变。因此,在分析解的传播行为时,有必要分别考虑顺时针(负速度)和逆时针(正速度)两种情况。为此,我们首次提出了 FL 方程黎曼问题解在顺时针和逆时针两种情况下的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信