Identifying Subsurface Connectivity From Observations: Experimentation With Equifinality Defines Both Challenges and Pathways to Progress

IF 3.2 3区 地球科学 Q1 Environmental Science
Kevin Bishop, Ali Ameli, Thomas Grabs, Hjalmar Laudon, Nino Amvrosiadi, Tamara Kolbe, Jan Seibert, Ilja van Meerveld
{"title":"Identifying Subsurface Connectivity From Observations: Experimentation With Equifinality Defines Both Challenges and Pathways to Progress","authors":"Kevin Bishop,&nbsp;Ali Ameli,&nbsp;Thomas Grabs,&nbsp;Hjalmar Laudon,&nbsp;Nino Amvrosiadi,&nbsp;Tamara Kolbe,&nbsp;Jan Seibert,&nbsp;Ilja van Meerveld","doi":"10.1002/hyp.15324","DOIUrl":null,"url":null,"abstract":"<p>Linkages between landscapes and streams are increasingly described in terms of hydrological connectivity. The ability to effectively distinguish different patterns of water movement through catchments makes connectivity particularly interesting to both scientists and practical water managers. Hydrometric data (groundwater levels, soil moisture and streamflow) are often employed to infer the connection between the landscape and its drainage network. Such observational data, however, are insufficient to infer subsurface connectivity in humid settings with perennial stream flow, due to the risk of equifinality. To quantify how much subsurface flow patterns can differ and still be consistent (equifinal) with comprehensive observations of hillslope groundwater levels and stream runoff (the hydrometric data), this study used a modelling experiment based on a well-characterised field site. Particle-tracking simulations at different flow rates defined the water flow paths and transit times of two virtual hillslopes that differed profoundly in the vertical distribution of the saturated hydraulic conductivity. Even though the simulated weekly stream flows and groundwater levels were similar (i.e., the hillslopes were hydrometrically equifinal) particle velocities and water ages at specific locations along these hillslopes differed by orders of magnitude. Flow path lengths and catchment transit times varied up to several 100%. The hillslope- and stream-based metrics used to describe connectivity also varied with stream flow rates. These results underline the need to recognise the risks for equifinality when inferring subsurface connectivity from hydrometric observations alone, even when those observations are comprehensive. The results also highlight the value of model simulations for quantifying the uncertainty in the inferred connectivity, targeting the best sampling locations/times to reduce this uncertainty with tracer data and better understanding the way connectivity influences stream chemistry.</p>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hyp.15324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15324","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Linkages between landscapes and streams are increasingly described in terms of hydrological connectivity. The ability to effectively distinguish different patterns of water movement through catchments makes connectivity particularly interesting to both scientists and practical water managers. Hydrometric data (groundwater levels, soil moisture and streamflow) are often employed to infer the connection between the landscape and its drainage network. Such observational data, however, are insufficient to infer subsurface connectivity in humid settings with perennial stream flow, due to the risk of equifinality. To quantify how much subsurface flow patterns can differ and still be consistent (equifinal) with comprehensive observations of hillslope groundwater levels and stream runoff (the hydrometric data), this study used a modelling experiment based on a well-characterised field site. Particle-tracking simulations at different flow rates defined the water flow paths and transit times of two virtual hillslopes that differed profoundly in the vertical distribution of the saturated hydraulic conductivity. Even though the simulated weekly stream flows and groundwater levels were similar (i.e., the hillslopes were hydrometrically equifinal) particle velocities and water ages at specific locations along these hillslopes differed by orders of magnitude. Flow path lengths and catchment transit times varied up to several 100%. The hillslope- and stream-based metrics used to describe connectivity also varied with stream flow rates. These results underline the need to recognise the risks for equifinality when inferring subsurface connectivity from hydrometric observations alone, even when those observations are comprehensive. The results also highlight the value of model simulations for quantifying the uncertainty in the inferred connectivity, targeting the best sampling locations/times to reduce this uncertainty with tracer data and better understanding the way connectivity influences stream chemistry.

Abstract Image

通过观测确定地下连通性:同等性实验既是挑战也是进步之路
人们越来越多地从水文连通性的角度来描述景观与溪流之间的联系。由于能够有效区分水流通过集水区的不同模式,因此连通性对科学家和实际水资源管理者来说都特别重要。水文数据(地下水位、土壤湿度和溪流)通常被用来推断景观与其排水网络之间的联系。然而,在常年有溪流的潮湿环境中,这些观测数据不足以推断地下水的连通性,因为存在等效性的风险。为了量化地下水流模式的差异程度,并使其与山坡地下水位和溪流径流的综合观测数据(水文数据)保持一致(等效),本研究在一个特征明显的野外地点进行了模拟实验。在不同流速下进行的粒子跟踪模拟确定了两个虚拟山坡的水流路径和过境时间,这两个山坡的饱和水导率垂直分布差异很大。尽管模拟的每周溪流流量和地下水位相似(即山坡水文等效),但沿这些山坡特定位置的颗粒速度和水龄却相差数个数量级。水流路径长度和集水过境时间相差达数个 100%。用于描述连通性的山坡和溪流指标也随溪流流速而变化。这些结果突出表明,在仅通过水文观测推断地下连通性时,需要认识到等效性的风险,即使这些观测是全面的。这些结果还强调了模型模拟在量化推断出的连通性的不确定性、确定最佳取样位置/时间以减少示踪剂数据的不确定性以及更好地理解连通性如何影响溪流化学性质方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrological Processes
Hydrological Processes 环境科学-水资源
CiteScore
6.00
自引率
12.50%
发文量
313
审稿时长
2-4 weeks
期刊介绍: Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信