Zero-curvature subconformal structures and dispersionless integrability in dimension five

IF 1 2区 数学 Q1 MATHEMATICS
Boris Kruglikov, Omid Makhmali
{"title":"Zero-curvature subconformal structures and dispersionless integrability in dimension five","authors":"Boris Kruglikov,&nbsp;Omid Makhmali","doi":"10.1112/jlms.70026","DOIUrl":null,"url":null,"abstract":"<p>We extend the recent paradigm “Integrability via Geometry” from dimensions 3 and 4 to higher dimensions, relating dispersionless integrability of partial differential equations to curvature constraints of the background geometry. We observe that in higher dimensions on any solution manifold, the symbol defines a vector distribution equipped with a subconformal structure, and the integrability imposes a certain compatibility between them. In dimension 5, we express dispersionless integrability via the vanishing of a certain curvature of this subconformal structure. We also obtain a “master equation” governing all second-order dispersionless integrable equations in 5D, and count their functional dimension. It turns out that the obtained background geometry is parabolic of the type <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>A</mi>\n <mn>3</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>P</mi>\n <mn>13</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(A_3,P_{13})$</annotation>\n </semantics></math>. We provide its Cartan-theoretic description and compute the harmonic curvature components via the Kostant theorem. Then, we relate it to 3D projective and 4D conformal geometries via twistor theory, discuss symmetry reductions and nested Lax sequences, as well as give another interpretation of dispersionless integrability in 5D through Levi-degenerate CR structures in 7D.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70026","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70026","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the recent paradigm “Integrability via Geometry” from dimensions 3 and 4 to higher dimensions, relating dispersionless integrability of partial differential equations to curvature constraints of the background geometry. We observe that in higher dimensions on any solution manifold, the symbol defines a vector distribution equipped with a subconformal structure, and the integrability imposes a certain compatibility between them. In dimension 5, we express dispersionless integrability via the vanishing of a certain curvature of this subconformal structure. We also obtain a “master equation” governing all second-order dispersionless integrable equations in 5D, and count their functional dimension. It turns out that the obtained background geometry is parabolic of the type ( A 3 , P 13 ) $(A_3,P_{13})$ . We provide its Cartan-theoretic description and compute the harmonic curvature components via the Kostant theorem. Then, we relate it to 3D projective and 4D conformal geometries via twistor theory, discuss symmetry reductions and nested Lax sequences, as well as give another interpretation of dispersionless integrability in 5D through Levi-degenerate CR structures in 7D.

零曲率亚共形结构与五维无分散可整性
我们将最近的范式 "通过几何的可积分性 "从 3 维和 4 维扩展到更高维,将偏微分方程的无分散可积分性与背景几何的曲率约束联系起来。我们观察到,在任何解流形的高维度上,符号定义了一个带有亚共形结构的矢量分布,而可积分性在它们之间施加了一定的相容性。在维度 5 中,我们通过这种亚共形结构的某种曲率的消失来表达无分散可积分性。我们还得到了一个 "主方程",它支配着 5 维中的所有二阶无色散可积分方程,并计算了它们的函数维数。结果发现,所得到的背景几何是抛物线型 ( A 3 , P 13 ) $(A_3,P_{13})$ 。我们提供了笛卡尔理论描述,并通过科斯坦定理计算了谐波曲率分量。然后,我们通过扭因子理论将其与三维投影几何和四维共形几何联系起来,讨论对称性还原和嵌套拉克斯序列,并通过 7D 的列维退化 CR 结构给出 5D 无色散可整性的另一种解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信