Fangqing Liu, Xiaoyi Lu, Chenglong Shi, Zhipeng Sun
{"title":"Cover Feature: Metal-Organic Framework Materials as Bifunctional Electrocatalyst for Rechargeable Zn-Air Batteries (Batteries & Supercaps 11/2024)","authors":"Fangqing Liu, Xiaoyi Lu, Chenglong Shi, Zhipeng Sun","doi":"10.1002/batt.202481102","DOIUrl":null,"url":null,"abstract":"<p><b>The Cover Feature</b> shows catalytic oxygen reduction (ORR) and oxygen evolution (OER) taking place in a liquid zinc–air battery system with the transfer of electrons and conversion between O<sub>2</sub> and OH<sup>−</sup>. The morphologies of the basic types of MOF catalysts for rechargeable zinc–air batteries are illustrated. Their porous structure and tunable chemical composition seem to be the main advantages for their use as electrocatalysts. Carbon-based materials derived from the MOF act as sacrificial templates with high activity, electrical conductivity and stability. In their Review (DOI: 10.1002/batt.202400402), Z. Sun and co-workers present three kinds of metal–organic skeleton bifunctional catalysts (pristine MOFs, MOF derivatives and composite derivatives) and show how they offer new possibilities for replacing noble metal catalysts.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"7 11","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202481102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202481102","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cover Feature shows catalytic oxygen reduction (ORR) and oxygen evolution (OER) taking place in a liquid zinc–air battery system with the transfer of electrons and conversion between O2 and OH−. The morphologies of the basic types of MOF catalysts for rechargeable zinc–air batteries are illustrated. Their porous structure and tunable chemical composition seem to be the main advantages for their use as electrocatalysts. Carbon-based materials derived from the MOF act as sacrificial templates with high activity, electrical conductivity and stability. In their Review (DOI: 10.1002/batt.202400402), Z. Sun and co-workers present three kinds of metal–organic skeleton bifunctional catalysts (pristine MOFs, MOF derivatives and composite derivatives) and show how they offer new possibilities for replacing noble metal catalysts.
期刊介绍:
Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.