Measurements of F1- Region Ionosphere State Variables at Arecibo Through Quasi Height-Independent Exhaustive Fittings of the Incoherent Scatter Ion-Line Spectra
{"title":"Measurements of F1- Region Ionosphere State Variables at Arecibo Through Quasi Height-Independent Exhaustive Fittings of the Incoherent Scatter Ion-Line Spectra","authors":"Yanlin Li, Qihou Zhou","doi":"10.1029/2024JA032620","DOIUrl":null,"url":null,"abstract":"<p>We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F<sub>1</sub>-region for molecular ion fraction (<i>f</i><sub><i>m</i></sub>), ion temperature (<i>T</i><sub><i>i</i></sub>), and electron temperature (<i>T</i><sub><i>e</i></sub>). The commonly used “full profile” approach for F<sub>1</sub>-region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height for <i>f</i><sub><i>m</i></sub>, <i>T</i><sub><i>i</i></sub>, <i>T</i><sub><i>e</i></sub>, and ion velocity (<i>V</i><sub><i>i</i></sub>) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fitting <i>f</i><sub><i>m</i></sub>, <i>T</i><sub><i>i</i></sub>, and <i>T</i><sub><i>e</i></sub> without constraints requires Doppler shift to be accurately determined and the ISS signal-to-noise ratio higher than the full-profile method, simulations show that <i>T</i><sub><i>i</i></sub>, <i>T</i><sub><i>e</i></sub>, and <i>f</i><sub><i>m</i></sub> can be recovered within a few percent accuracy with a moderate signal-to-noise ratio. We apply the exhaustive search approach to the Arecibo high-resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height-independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high-resolution measurements of <i>T</i><sub><i>i</i></sub>, <i>T</i><sub><i>e</i></sub>, <i>f</i><sub><i>m</i></sub>, <i>V</i><sub><i>i</i></sub>, and electron concentration (<i>N</i><sub><i>e</i></sub>) in our approach open new opportunities for synergistic studies of the F<sub>1</sub>-region dynamics and chemistry.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032620","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss an exhaustive search approach to fit the incoherent scatter spectrum (ISS) in the F1-region for molecular ion fraction (fm), ion temperature (Ti), and electron temperature (Te). The commonly used “full profile” approach for F1-region measurements parameterizes the molecular ion fraction as a function of altitude and fits all the related heights for the state variables. In our approach, we fit the ISS at each height for fm, Ti, Te, and ion velocity (Vi) independently. Our exhaustive search method finds all the major local minima at each altitude. Although a parameterized function is used to guide the algorithm in finding the best solution, the fitting parameters retain their local characteristics. Despite that fitting fm, Ti, and Te without constraints requires Doppler shift to be accurately determined and the ISS signal-to-noise ratio higher than the full-profile method, simulations show that Ti, Te, and fm can be recovered within a few percent accuracy with a moderate signal-to-noise ratio. We apply the exhaustive search approach to the Arecibo high-resolution incoherent scatter radar data taken on 13 September 2014. The derived ion and electron temperatures are sensitive enough to reveal thermosphere gravity waves commonly seen in the electron density previously. Our method is more robust than previous height-independent fitting methods. Comparison with another Arecibo program indicates our results are likely more accurate. Simultaneous high-resolution measurements of Ti, Te, fm, Vi, and electron concentration (Ne) in our approach open new opportunities for synergistic studies of the F1-region dynamics and chemistry.
我们讨论了拟合 F1 区域非相干散射光谱(ISS)的分子离子分数(fm)、离子温度(Ti)和电子温度(Te)的穷举搜索方法。常用的 F1 区域测量 "全剖面 "方法将分子离子分数参数化为高度函数,并拟合状态变量的所有相关高度。在我们的方法中,我们单独拟合了每个高度上 ISS 的 fm、Ti、Te 和离子速度 (Vi)。我们的穷举搜索法可以找到每个高度的所有主要局部极小值。虽然使用了参数化函数来指导算法寻找最佳解决方案,但拟合参数仍保留了其局部特征。尽管无约束拟合 fm、Ti 和 Te 需要精确测定多普勒频移,而且国际空间站的信噪比高于全剖面方法,但模拟结果表明,Ti、Te 和 fm 可以在中等信噪比的情况下以百分之几的精度恢复。我们将穷举搜索方法应用于 2014 年 9 月 13 日拍摄的阿雷西博高分辨率非相干散射雷达数据。得出的离子和电子温度灵敏度很高,足以揭示以前在电子密度中常见的热层重力波。我们的方法比以往与高度无关的拟合方法更加稳健。与另一个阿雷西博项目的比较表明,我们的结果可能更加准确。我们的方法同时对 Ti、Te、fm、Vi 和电子浓度(Ne)进行了高分辨率测量,为 F1 区域动力学和化学的协同研究提供了新的机会。