Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach (Adv. Biology 11/2024)

IF 3.2 3区 生物学 Q3 MATERIALS SCIENCE, BIOMATERIALS
Marilisa Cortesi, Dongli Liu, Elyse Powell, Ellen Barlow, Kristina Warton, Caroline E. Ford
{"title":"Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach (Adv. Biology 11/2024)","authors":"Marilisa Cortesi,&nbsp;Dongli Liu,&nbsp;Elyse Powell,&nbsp;Ellen Barlow,&nbsp;Kristina Warton,&nbsp;Caroline E. Ford","doi":"10.1002/adbi.202470112","DOIUrl":null,"url":null,"abstract":"<p><b>Accurate Identification of Cancer Cells</b></p><p>Distinguishing the contribution of different cell types in co-cultures is a major challenge. Marilisa Cortesi, Caroline E. Ford, and co-workers have addressed it through a deep learning-based software tool that distinguishes healthy and cancer cells solely from the shape of the nucleus. This method opens to the possibility of using a wide variety of cell types, including patient-derived ones, in co-cultures. More details can be found in article number 2400034. Image created by Dr. Tim Salita.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7234,"journal":{"name":"Advanced biology","volume":"8 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adbi.202470112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adbi.202470112","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate Identification of Cancer Cells

Distinguishing the contribution of different cell types in co-cultures is a major challenge. Marilisa Cortesi, Caroline E. Ford, and co-workers have addressed it through a deep learning-based software tool that distinguishes healthy and cancer cells solely from the shape of the nucleus. This method opens to the possibility of using a wide variety of cell types, including patient-derived ones, in co-cultures. More details can be found in article number 2400034. Image created by Dr. Tim Salita.

Abstract Image

利用深度学习神经网络准确识别复杂临床前模型中的癌细胞:无转染方法(生物学进展 11/2024)
准确识别癌细胞区分共培养物中不同类型细胞的贡献是一项重大挑战。Marilisa Cortesi、Caroline E. Ford 及其合作者通过一种基于深度学习的软件工具解决了这一难题。这种方法为在共培养中使用多种细胞类型(包括源自患者的细胞)提供了可能性。更多详情,请参阅文章编号 2400034。图片由 Tim Salita 博士创建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced biology
Advanced biology Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
6.60
自引率
0.00%
发文量
130
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信