{"title":"A Novel Thermoelectric Generation Array Reconfiguration to Reduce Mismatch Power Loss Under Nonuniform Temperature Distribution","authors":"Mingfeng Tang, Jun Wang, Yangqi Ou, Ziqiao Tang","doi":"10.1155/2024/7820395","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7820395","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7820395","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In practice, industrial exhaust emissions as well as emissions from automobiles, ships, biomass combustion, etc., can be potential application areas for thermoelectric generation (TEG). However, the structural design of heat exchange equipment is usually limited by the internal flow field, resulting in uneven temperature distribution on the heat exchange equipment’s surface. The resulting mismatch power loss is a major challenge for thermoelectric power generation. In this study, based on the characteristics of the surface temperature distribution of heat exchange equipment in the context of gas emissions, a static reconfiguration scheme is proposed for reconfiguring honeycomb (HC) arrays using the symmetric interval crossing (SIC) method. Based on a fixed interconnect array configuration, the solution requires only a change in the location of the modules and no change in the electrical connections, thus reducing mismatch losses while lowering manufacturing costs. Test experiments are conducted for 6 × 6 TEG arrays, mismatch losses are evaluated for four nonuniform temperature distribution cases, and the performance of seven different TEG array configurations is compared. The findings demonstrate that, in nonuniform temperature distribution scenarios, the SIC method can effectively reduce mismatch losses and has a greater output power than alternative array configurations.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system