Stephanie J. Wilson, Ben Bond-Lamberty, Genevieve Noyce, Roberta Bittencourt Peixoto, J. Patrick Megonigal
{"title":"fluxfinder: An R Package for Reproducible Calculation and Initial Processing of Greenhouse Gas Fluxes From Static Chamber Measurements","authors":"Stephanie J. Wilson, Ben Bond-Lamberty, Genevieve Noyce, Roberta Bittencourt Peixoto, J. Patrick Megonigal","doi":"10.1029/2024JG008208","DOIUrl":null,"url":null,"abstract":"<p>Fluxes of greenhouse gases are a critical component of the earth's natural climate, but anthropogenic emissions have created an imbalance and resulted in global climate change. Quantifying the emission of these gases is vital to our understanding of their sources and sinks, both natural and anthropogenic. The static chamber method, in which a system of interest is enclosed, and gas concentrations are measured over time, is widely used to estimate fluxes of greenhouse gases. With the development of instruments such as infrared gas analyzers (IRGAs) supporting high-frequency concentration data, there is a growing need for open-source workflows to calculate fluxes. Here we present <i>fluxfinder</i>, an R package designed to support reproducible calculations and processing of greenhouse gas fluxes measured with the static chamber method. The package includes raw data file parsing from widely used IRGAs, metadata matching, unit conversion, flux estimations, and initial quality assurance/quality control (QA/QC). Diagnostic graphical plots provide a transparent way to differentiate between measurement issues and nonlinear behavior. The package is also designed to be easily integrated with the <i>gasfluxes</i> package for further fitting of nonlinear concentration-time models, allowing alternative or additional flux QA/QC. The <i>fluxfinder</i> package offers a flexible workflow that is easily adaptable to promote open and reproducible greenhouse gas flux estimations.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008208","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fluxes of greenhouse gases are a critical component of the earth's natural climate, but anthropogenic emissions have created an imbalance and resulted in global climate change. Quantifying the emission of these gases is vital to our understanding of their sources and sinks, both natural and anthropogenic. The static chamber method, in which a system of interest is enclosed, and gas concentrations are measured over time, is widely used to estimate fluxes of greenhouse gases. With the development of instruments such as infrared gas analyzers (IRGAs) supporting high-frequency concentration data, there is a growing need for open-source workflows to calculate fluxes. Here we present fluxfinder, an R package designed to support reproducible calculations and processing of greenhouse gas fluxes measured with the static chamber method. The package includes raw data file parsing from widely used IRGAs, metadata matching, unit conversion, flux estimations, and initial quality assurance/quality control (QA/QC). Diagnostic graphical plots provide a transparent way to differentiate between measurement issues and nonlinear behavior. The package is also designed to be easily integrated with the gasfluxes package for further fitting of nonlinear concentration-time models, allowing alternative or additional flux QA/QC. The fluxfinder package offers a flexible workflow that is easily adaptable to promote open and reproducible greenhouse gas flux estimations.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology