Aileen K. Taylor, Sean J. Sharp, Graham A. Stewart, Michael R. Williams, Greg W. McCarty, Margaret A. Palmer
{"title":"Diel Greenhouse Gas Emissions Demonstrate a Strong Response to Vegetation Patch Types in a Freshwater Wetland","authors":"Aileen K. Taylor, Sean J. Sharp, Graham A. Stewart, Michael R. Williams, Greg W. McCarty, Margaret A. Palmer","doi":"10.1029/2024JG008193","DOIUrl":null,"url":null,"abstract":"<p>Wetland methane (CH<sub>4</sub>) fluxes are highly variable over spatial and temporal scales due to variations in CH<sub>4</sub> production, oxidation, and transport. While some aspects of temporal variability in CH<sub>4</sub> fluxes are well documented, diel variability is poorly constrained, and studies report conflicting findings, making it difficult to generalize. Topographic, geochemical, hydroclimatic, and vegetative variability can result in characteristically different “patches” that likely influence differences in diel patterns. We investigated diel patterns of CH<sub>4</sub> fluxes from a large seasonal-mineral soil wetland in Maryland (USA) across three functionally unique patches: two with vegetation (emergent and submerged aquatic vegetation) and one without (open water) during the summer of 2021. To explore the relationships between vegetation, environmental conditions, and flux patterns, we also measured physiochemical variables (air and water temperature, pH, relative humidity, PAR, dissolved oxygen, and water depth). To our knowledge, this is the first study comparing diel variability using chambers across such distinct vegetation patch types. We found that diel patterns were strongly linked to patch types: CH<sub>4</sub> fluxes from the emergent vegetation did not display a consistent diel pattern, while fluxes from the submerged vegetation and no vegetation patches frequently peaked at 13:00 and 05:00, respectively. These differences could be a direct result of vegetation impact on production, oxidation, and/or transport of CH<sub>4</sub> or on conditions covarying with patch type. This study contributes to the growing understanding of how CH<sub>4</sub> fluxes vary spatially over diel cycles and emphasizes the importance of considering spatially varying diel patterns when estimating fluxes.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008193","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008193","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wetland methane (CH4) fluxes are highly variable over spatial and temporal scales due to variations in CH4 production, oxidation, and transport. While some aspects of temporal variability in CH4 fluxes are well documented, diel variability is poorly constrained, and studies report conflicting findings, making it difficult to generalize. Topographic, geochemical, hydroclimatic, and vegetative variability can result in characteristically different “patches” that likely influence differences in diel patterns. We investigated diel patterns of CH4 fluxes from a large seasonal-mineral soil wetland in Maryland (USA) across three functionally unique patches: two with vegetation (emergent and submerged aquatic vegetation) and one without (open water) during the summer of 2021. To explore the relationships between vegetation, environmental conditions, and flux patterns, we also measured physiochemical variables (air and water temperature, pH, relative humidity, PAR, dissolved oxygen, and water depth). To our knowledge, this is the first study comparing diel variability using chambers across such distinct vegetation patch types. We found that diel patterns were strongly linked to patch types: CH4 fluxes from the emergent vegetation did not display a consistent diel pattern, while fluxes from the submerged vegetation and no vegetation patches frequently peaked at 13:00 and 05:00, respectively. These differences could be a direct result of vegetation impact on production, oxidation, and/or transport of CH4 or on conditions covarying with patch type. This study contributes to the growing understanding of how CH4 fluxes vary spatially over diel cycles and emphasizes the importance of considering spatially varying diel patterns when estimating fluxes.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology