On a posteriori error estimation for Runge–Kutta discontinuous Galerkin methods for linear hyperbolic problems

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Emmanuil H. Georgoulis, Edward J. C. Hall, Charalambos G. Makridakis
{"title":"On a posteriori error estimation for Runge–Kutta discontinuous Galerkin methods for linear hyperbolic problems","authors":"Emmanuil H. Georgoulis,&nbsp;Edward J. C. Hall,&nbsp;Charalambos G. Makridakis","doi":"10.1111/sapm.12772","DOIUrl":null,"url":null,"abstract":"<p>A posteriori bounds for the error measured in various norms for a standard second-order explicit-in-time Runge–Kutta discontinuous Galerkin (RKDG) discretization of a one-dimensional (in space) linear transport problem are derived. The proof is based on a novel space-time polynomial reconstruction, hinging on high-order temporal reconstructions for continuous and discontinuous Galerkin time-stepping methods. Of particular interest is the question of error estimation under dynamic mesh modification. The theoretical findings are tested by numerical experiments.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.12772","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12772","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A posteriori bounds for the error measured in various norms for a standard second-order explicit-in-time Runge–Kutta discontinuous Galerkin (RKDG) discretization of a one-dimensional (in space) linear transport problem are derived. The proof is based on a novel space-time polynomial reconstruction, hinging on high-order temporal reconstructions for continuous and discontinuous Galerkin time-stepping methods. Of particular interest is the question of error estimation under dynamic mesh modification. The theoretical findings are tested by numerical experiments.

Abstract Image

论线性双曲问题 Runge-Kutta 非连续 Galerkin 方法的后验误差估计
对一维(空间)线性传输问题的标准二阶显式实时 Runge-Kutta 非连续 Galerkin(RKDG)离散化,推导出了以各种规范测量的误差后验边界。证明基于新颖的时空多项式重构,以连续和非连续 Galerkin 时间步进方法的高阶时间重构为基础。特别值得关注的是动态网格修改下的误差估计问题。我们通过数值实验对理论结论进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信