Weakening Induced by Phase Nucleation in Metamorphic Rocks: Insights From Numerical Models

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
M. Baïsset, P. Yamato, T. Duretz
{"title":"Weakening Induced by Phase Nucleation in Metamorphic Rocks: Insights From Numerical Models","authors":"M. Baïsset,&nbsp;P. Yamato,&nbsp;T. Duretz","doi":"10.1029/2024GC011706","DOIUrl":null,"url":null,"abstract":"<p>Metamorphic transformations involve important changes in material properties that can be responsible for rheological alterations of rocks. Studying the dynamics of these changes is therefore crucial to understand the weakening frequently observed in reactive rocks undergoing deformation. Here, we explore the effects of reaction dynamics on the mechanical behavior of rocks by employing a numerical model where nucleation kinetics and reaction product properties are controlled over time during deformation. Different values are tested for nucleation kinetics, density, viscosity, proportion and size of the reaction products, and pressure-strain rate conditions relative to the brittle-ductile transition. Our results, in good agreement with laboratory and field observations, show that rock weakening is not just a matter of the strength of the reaction products. Both density and viscosity variations caused by the transformation control local stress amplification. A significant densification can by itself generate sufficient stresses to reach the plastic yield of the matrix, even if the nuclei are stronger than their matrix. Plastic shear bands initiate in the vicinity of the newly formed inclusions in response to local stress increases. Coalescence of these shear bands are then responsible for strain weakening. We show that heterogeneous nucleation controlled by mechanical work has an even greater impact than the intrinsic properties of the reaction products. Propagation of plastic shear bands is enhanced between closely spaced nuclei that generate significant stress increases in their vicinity. This study highlights the importance of transformational weakening in strong rocks affected by fast reaction kinetics close to their brittle-ductile transition.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011706","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011706","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Metamorphic transformations involve important changes in material properties that can be responsible for rheological alterations of rocks. Studying the dynamics of these changes is therefore crucial to understand the weakening frequently observed in reactive rocks undergoing deformation. Here, we explore the effects of reaction dynamics on the mechanical behavior of rocks by employing a numerical model where nucleation kinetics and reaction product properties are controlled over time during deformation. Different values are tested for nucleation kinetics, density, viscosity, proportion and size of the reaction products, and pressure-strain rate conditions relative to the brittle-ductile transition. Our results, in good agreement with laboratory and field observations, show that rock weakening is not just a matter of the strength of the reaction products. Both density and viscosity variations caused by the transformation control local stress amplification. A significant densification can by itself generate sufficient stresses to reach the plastic yield of the matrix, even if the nuclei are stronger than their matrix. Plastic shear bands initiate in the vicinity of the newly formed inclusions in response to local stress increases. Coalescence of these shear bands are then responsible for strain weakening. We show that heterogeneous nucleation controlled by mechanical work has an even greater impact than the intrinsic properties of the reaction products. Propagation of plastic shear bands is enhanced between closely spaced nuclei that generate significant stress increases in their vicinity. This study highlights the importance of transformational weakening in strong rocks affected by fast reaction kinetics close to their brittle-ductile transition.

Abstract Image

变质岩相核诱发的弱化:数值模型的启示
变质转化涉及材料性质的重要变化,这些变化可能是岩石流变性改变的原因。因此,研究这些变化的动态对于理解在发生变形的反应岩石中经常观察到的弱化现象至关重要。在此,我们采用了一个数值模型,在该模型中,成核动力学和反应产物的特性在变形过程中随时间变化而受控,从而探索反应动力学对岩石力学行为的影响。我们测试了成核动力学、密度、粘度、反应产物的比例和大小以及相对于脆性-韧性转变的压力-应变速率条件的不同值。我们的结果与实验室和现场观测结果十分吻合,表明岩石减弱不仅仅是反应产物强度的问题。转变引起的密度和粘度变化都控制着局部应力的放大。即使岩核的强度高于其基体,明显的致密化本身也能产生足够的应力,以达到基体的塑性屈服。随着局部应力的增加,在新形成的夹杂物附近会产生塑性剪切带。这些剪切带的凝聚是应变减弱的原因。我们的研究表明,由机械功控制的异质成核比反应产物的固有特性影响更大。塑性剪切带的传播在间距较近的晶核之间得到加强,这些晶核会在其附近产生显著的应力增加。这项研究强调了在接近脆-韧性转变期时受快速反应动力学影响的坚固岩石中转化弱化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信