Vahid Salehi, Paul M. Salmon, Catherine Burns, Alexis McGill, Doug Smith, Brian Veitch
{"title":"Towards Holistic Functional Task Analysis","authors":"Vahid Salehi, Paul M. Salmon, Catherine Burns, Alexis McGill, Doug Smith, Brian Veitch","doi":"10.1002/hfm.21059","DOIUrl":null,"url":null,"abstract":"<p>Task analysis (TA) can contribute to work systems design, accident investigation, risk assessment, human error identification, planning, and training. Despite the advantages of existing sequential and hierarchical methods, they decompose tasks into their structure and focus on the order in which tasks are accomplished. They do not trace all interactions among elements/subtasks/operations at different levels. As the complexity of tasks increases, not keeping track of all interactions may result in poor, unwanted outcomes. This research introduces a different approach to TA that decomposes tasks into their constituent functions, describes the functionality of the overall work system, traces (dynamic nonlinear) interactions among functions, and highlights the role of functional variability in forming emergent outcomes. This approach to TA is called functional task analysis (FTA). A case study on nursing work was used to demonstrate the suitability of the FTA approach. The findings of this study show that the FTA approach contributes to task modeling by building a nonsequential, nonhierarchical functional model of a complex task considering dynamic, nonlinear interactions among functions. The FTA also contributes to task description by explaining different ways a task can be accomplished. It also increases the understanding, interpretation, and analysis of how changes in work conditions shape good/acceptable and poor/unacceptable outcomes. The FTA can complement the TA by adding some aspects, including functionality, nonlinearity, dynamics, and emergence, that the TA does not normally consider. The findings highlight how the functional approach to TA can be deployed as an alternative (or complement) to other task analysis methods.</p>","PeriodicalId":55048,"journal":{"name":"Human Factors and Ergonomics in Manufacturing & Service Industries","volume":"35 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hfm.21059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Factors and Ergonomics in Manufacturing & Service Industries","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hfm.21059","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Task analysis (TA) can contribute to work systems design, accident investigation, risk assessment, human error identification, planning, and training. Despite the advantages of existing sequential and hierarchical methods, they decompose tasks into their structure and focus on the order in which tasks are accomplished. They do not trace all interactions among elements/subtasks/operations at different levels. As the complexity of tasks increases, not keeping track of all interactions may result in poor, unwanted outcomes. This research introduces a different approach to TA that decomposes tasks into their constituent functions, describes the functionality of the overall work system, traces (dynamic nonlinear) interactions among functions, and highlights the role of functional variability in forming emergent outcomes. This approach to TA is called functional task analysis (FTA). A case study on nursing work was used to demonstrate the suitability of the FTA approach. The findings of this study show that the FTA approach contributes to task modeling by building a nonsequential, nonhierarchical functional model of a complex task considering dynamic, nonlinear interactions among functions. The FTA also contributes to task description by explaining different ways a task can be accomplished. It also increases the understanding, interpretation, and analysis of how changes in work conditions shape good/acceptable and poor/unacceptable outcomes. The FTA can complement the TA by adding some aspects, including functionality, nonlinearity, dynamics, and emergence, that the TA does not normally consider. The findings highlight how the functional approach to TA can be deployed as an alternative (or complement) to other task analysis methods.
期刊介绍:
The purpose of Human Factors and Ergonomics in Manufacturing & Service Industries is to facilitate discovery, integration, and application of scientific knowledge about human aspects of manufacturing, and to provide a forum for worldwide dissemination of such knowledge for its application and benefit to manufacturing industries. The journal covers a broad spectrum of ergonomics and human factors issues with a focus on the design, operation and management of contemporary manufacturing systems, both in the shop floor and office environments, in the quest for manufacturing agility, i.e. enhancement and integration of human skills with hardware performance for improved market competitiveness, management of change, product and process quality, and human-system reliability. The inter- and cross-disciplinary nature of the journal allows for a wide scope of issues relevant to manufacturing system design and engineering, human resource management, social, organizational, safety, and health issues. Examples of specific subject areas of interest include: implementation of advanced manufacturing technology, human aspects of computer-aided design and engineering, work design, compensation and appraisal, selection training and education, labor-management relations, agile manufacturing and virtual companies, human factors in total quality management, prevention of work-related musculoskeletal disorders, ergonomics of workplace, equipment and tool design, ergonomics programs, guides and standards for industry, automation safety and robot systems, human skills development and knowledge enhancing technologies, reliability, and safety and worker health issues.