Jing Zhang, Guotao Gao, Yabin An, Keliang Zhang, Jijun Feng, Xianzhong Sun, Chen Li, Xiaohu Zhang, Yinghui Gao, Kai Wang, Xiong Zhang, Yanwei Ma
{"title":"Thermal Safety Characteristic Analysis of Large-Format Pouch Li-Ion Capacitors","authors":"Jing Zhang, Guotao Gao, Yabin An, Keliang Zhang, Jijun Feng, Xianzhong Sun, Chen Li, Xiaohu Zhang, Yinghui Gao, Kai Wang, Xiong Zhang, Yanwei Ma","doi":"10.1002/ente.202401272","DOIUrl":null,"url":null,"abstract":"<p>Lithium-ion capacitors (LICs), as the next generation of supercapacitors, combine the high power density and long cycle life of supercapacitors with the high energy density of lithium-ion batteries, presenting broad prospects for applications and becoming a focal point of research in academia and industry. Safety concerns regarding LICs, particularly the crucial issue of thermal safety, have garnered widespread attention. This study investigates the thermal abuse, electrical abuse, and mechanical abuse of 1100 F LICs, including overheating, overcharging, overdischarging, needling, extrusion, and short circuit tests, with real-time monitoring of temperature, gas emissions, and voltage to explore thermal runaway mechanisms. The results demonstrate that LICs remain safe under abusive conditions, with no occurrences of fire or explosion hazards.</p>","PeriodicalId":11573,"journal":{"name":"Energy technology","volume":"12 11","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ente.202401272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion capacitors (LICs), as the next generation of supercapacitors, combine the high power density and long cycle life of supercapacitors with the high energy density of lithium-ion batteries, presenting broad prospects for applications and becoming a focal point of research in academia and industry. Safety concerns regarding LICs, particularly the crucial issue of thermal safety, have garnered widespread attention. This study investigates the thermal abuse, electrical abuse, and mechanical abuse of 1100 F LICs, including overheating, overcharging, overdischarging, needling, extrusion, and short circuit tests, with real-time monitoring of temperature, gas emissions, and voltage to explore thermal runaway mechanisms. The results demonstrate that LICs remain safe under abusive conditions, with no occurrences of fire or explosion hazards.
期刊介绍:
Energy Technology provides a forum for researchers and engineers from all relevant disciplines concerned with the generation, conversion, storage, and distribution of energy.
This new journal shall publish articles covering all technical aspects of energy process engineering from different perspectives, e.g.,
new concepts of energy generation and conversion;
design, operation, control, and optimization of processes for energy generation (e.g., carbon capture) and conversion of energy carriers;
improvement of existing processes;
combination of single components to systems for energy generation;
design of systems for energy storage;
production processes of fuels, e.g., hydrogen, electricity, petroleum, biobased fuels;
concepts and design of devices for energy distribution.