Effect of Laser Powder Bed Fusion Parameters on the Evolution of Melt Pool, Densification, Microstructure, and Hardness in 420 Stainless Steel Parts

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ângela Cunha, Michael Gasik, Filipe Samuel Silva, Bruno Trindade, Flávio Bartolomeu, Óscar Carvalho
{"title":"Effect of Laser Powder Bed Fusion Parameters on the Evolution of Melt Pool, Densification, Microstructure, and Hardness in 420 Stainless Steel Parts","authors":"Ângela Cunha,&nbsp;Michael Gasik,&nbsp;Filipe Samuel Silva,&nbsp;Bruno Trindade,&nbsp;Flávio Bartolomeu,&nbsp;Óscar Carvalho","doi":"10.1002/adem.202301745","DOIUrl":null,"url":null,"abstract":"<p>Laser powder bed fusion (LPBF) involves depositing, melting, and solidifying metal powder particles layer by layer to create 3D components. In this study, a deep fundamental understanding on how process parameters—laser power, scan speed, and hatch spacing—affect the melt pool, densification, microstructure, hardness, and thermal behavior of 420 stainless steel (420SS) parts produced by such technology is provided. The conducted investigation considers five levels of laser power and hatch spacing, and four scan speeds. Optimal single tracks, based on geometry and profile, are achieved with laser powers between 40 and 80 W and a scan speed of 10 mm s<sup>−1</sup>. In the multitrack analysis, it is indicated that a dense, smooth surface is obtained with a hatch spacing of 250 μm, corresponding to an overlapping rate of ≈30%. The 420SS samples show high densification (≈99%) and low surface roughness (≈3.62 μm). The microstructure consisted of martensite laths and retained austenite. The hardness and thermal conductivity of the samples are measured at 540 HV and 15.3 W m<sup>−1</sup> K<sup>−1</sup>, respectively. In this study, the understanding of the process–structure–property relationships in LPBF of 420SS is expanded.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202301745","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Laser powder bed fusion (LPBF) involves depositing, melting, and solidifying metal powder particles layer by layer to create 3D components. In this study, a deep fundamental understanding on how process parameters—laser power, scan speed, and hatch spacing—affect the melt pool, densification, microstructure, hardness, and thermal behavior of 420 stainless steel (420SS) parts produced by such technology is provided. The conducted investigation considers five levels of laser power and hatch spacing, and four scan speeds. Optimal single tracks, based on geometry and profile, are achieved with laser powers between 40 and 80 W and a scan speed of 10 mm s−1. In the multitrack analysis, it is indicated that a dense, smooth surface is obtained with a hatch spacing of 250 μm, corresponding to an overlapping rate of ≈30%. The 420SS samples show high densification (≈99%) and low surface roughness (≈3.62 μm). The microstructure consisted of martensite laths and retained austenite. The hardness and thermal conductivity of the samples are measured at 540 HV and 15.3 W m−1 K−1, respectively. In this study, the understanding of the process–structure–property relationships in LPBF of 420SS is expanded.

Abstract Image

激光粉末床熔融参数对 420 不锈钢零件熔池、致密化、微观结构和硬度演变的影响
激光粉末床熔融技术(LPBF)涉及金属粉末颗粒的逐层沉积、熔化和凝固,以制造三维部件。在本研究中,我们从根本上深入了解了激光功率、扫描速度和舱口间距等工艺参数如何影响用这种技术生产的 420 不锈钢(420SS)部件的熔池、致密化、微观结构、硬度和热行为。研究考虑了五种激光功率、舱口间距和四种扫描速度。在激光功率为 40 至 80 W、扫描速度为 10 mm s-1 的情况下,根据几何形状和轮廓实现了最佳单轨。多轨分析表明,当舱口间距为 250 μm 时,可获得致密光滑的表面,重叠率≈30%。420SS 样品的致密化程度高(≈99%),表面粗糙度低(≈3.62 μm)。显微结构由马氏体板条和残余奥氏体组成。样品的硬度和热导率分别是在 540 HV 和 15.3 W m-1 K-1 下测得的。这项研究加深了人们对 420SS LPBF 的工艺-结构-性能关系的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信