{"title":"Phosphorylation as an Effective Tool to Improve Stability and Reduce Toxicity of Antimicrobial Peptides","authors":"Zufang Ba, Yu Wang, Yinyin Yang, Bingqian Ren, Beibei Li, Xu Ouyang, Jingying Zhang, Tingting Yang, Yao Liu, Yuhuan Zhao, Ping Yang, Xiaoyan Wu, Wenbo Mao, Chao Zhong, Hui Liu, Yun Zhang, Sanhu Gou* and Jingman Ni*, ","doi":"10.1021/acs.jmedchem.4c0117910.1021/acs.jmedchem.4c01179","DOIUrl":null,"url":null,"abstract":"<p >Developing a straightforward and effective strategy to modify antimicrobial peptides (AMPs) is crucial in overcoming the challenges posed by their instability and toxicity. Phosphorylation can reduce toxicity and improve the stability of AMPs. Based on these, we designed a series of peptides and their corresponding phosphorylated forms. The results showed that all phosphorylated peptides displayed reduced toxicity and enhanced stability compared to their unphosphorylated counterparts. Among them, W<sub>3</sub>BipY<sub>8</sub>-P stood out as the most promising peptide, exhibiting similar antibacterial activity as its unphosphorylated analog W<sub>3</sub>BipY<sub>8</sub> but with significantly reduced hemolytic activity (19-fold decrease), cytotoxicity (3.3-fold decrease), and an extended serum half-life 6.3 times longer than W<sub>3</sub>BipY<sub>8</sub>. W<sub>3</sub>BipY<sub>8</sub>-P exerted bactericidal effects by disrupting bacterial membranes. Notably, W<sub>3</sub>BipY<sub>8</sub>-P significantly prolonged the survival of bacteria-infected animals while its LD<sub>50</sub> was 4.2 times higher than that of W<sub>3</sub>BipY<sub>8</sub>. These findings highlight phosphorylation as an effective strategy for improving the antimicrobial properties of AMPs.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 21","pages":"18807–18827 18807–18827"},"PeriodicalIF":6.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c01179","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing a straightforward and effective strategy to modify antimicrobial peptides (AMPs) is crucial in overcoming the challenges posed by their instability and toxicity. Phosphorylation can reduce toxicity and improve the stability of AMPs. Based on these, we designed a series of peptides and their corresponding phosphorylated forms. The results showed that all phosphorylated peptides displayed reduced toxicity and enhanced stability compared to their unphosphorylated counterparts. Among them, W3BipY8-P stood out as the most promising peptide, exhibiting similar antibacterial activity as its unphosphorylated analog W3BipY8 but with significantly reduced hemolytic activity (19-fold decrease), cytotoxicity (3.3-fold decrease), and an extended serum half-life 6.3 times longer than W3BipY8. W3BipY8-P exerted bactericidal effects by disrupting bacterial membranes. Notably, W3BipY8-P significantly prolonged the survival of bacteria-infected animals while its LD50 was 4.2 times higher than that of W3BipY8. These findings highlight phosphorylation as an effective strategy for improving the antimicrobial properties of AMPs.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.