Viet Anh Nguyen, Ye Wu, Thi Thu Ha Do, Linh Thi Dieu Nguyen, Aleksandr A. Sergeev, Ding Zhu, Vytautas Valuckas, Duong Pham, Hai Xuan Son Bui, Duy Mai Hoang, Bui Son Tung, Bui Xuan Khuyen, Thanh Binh Nguyen, Hai Son Nguyen, Vu Dinh Lam, Andrey L. Rogach, Son Tung Ha and Quynh Le-Van*,
{"title":"Micrometer-Resolution Fluorescence and Lifetime Mappings of CsPbBr3 Nanocrystal Films Coupled with a TiO2 Grating","authors":"Viet Anh Nguyen, Ye Wu, Thi Thu Ha Do, Linh Thi Dieu Nguyen, Aleksandr A. Sergeev, Ding Zhu, Vytautas Valuckas, Duong Pham, Hai Xuan Son Bui, Duy Mai Hoang, Bui Son Tung, Bui Xuan Khuyen, Thanh Binh Nguyen, Hai Son Nguyen, Vu Dinh Lam, Andrey L. Rogach, Son Tung Ha and Quynh Le-Van*, ","doi":"10.1021/acs.jpclett.4c0254610.1021/acs.jpclett.4c02546","DOIUrl":null,"url":null,"abstract":"<p >Enhancing light emission from perovskite nanocrystal (NC) films is essential in light-emitting devices, as their conventional stacks often restrict the escape of emitted light. This work addresses this challenge by employing a TiO<sub>2</sub> grating to enhance light extraction and shape the emission of CsPbBr<sub>3</sub> nanocrystal films. Angle-resolved photoluminescence (PL) demonstrated a 10-fold increase in emission intensity by coupling the Bloch resonances of the grating with the spontaneous emission of the perovskite NCs. Fluorescence lifetime imaging microscopy (FLIM) provided micrometer-resolution mapping of both PL intensity and lifetime across a large area, revealing a decrease in PL lifetime from 8.2 ns for NC films on glass to 6.1 ns on the TiO<sub>2</sub> grating. Back focal plane (BFP) spectroscopy confirmed how the Bloch resonances transformed the unpolarized, spatially incoherent emission of NCs into polarized and directed light. These findings provide further insights into the interactions between dielectric nanostructures and perovskite NC films, offering possible pathways for designing better performing perovskite optoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 45","pages":"11291–11299 11291–11299"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c02546","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing light emission from perovskite nanocrystal (NC) films is essential in light-emitting devices, as their conventional stacks often restrict the escape of emitted light. This work addresses this challenge by employing a TiO2 grating to enhance light extraction and shape the emission of CsPbBr3 nanocrystal films. Angle-resolved photoluminescence (PL) demonstrated a 10-fold increase in emission intensity by coupling the Bloch resonances of the grating with the spontaneous emission of the perovskite NCs. Fluorescence lifetime imaging microscopy (FLIM) provided micrometer-resolution mapping of both PL intensity and lifetime across a large area, revealing a decrease in PL lifetime from 8.2 ns for NC films on glass to 6.1 ns on the TiO2 grating. Back focal plane (BFP) spectroscopy confirmed how the Bloch resonances transformed the unpolarized, spatially incoherent emission of NCs into polarized and directed light. These findings provide further insights into the interactions between dielectric nanostructures and perovskite NC films, offering possible pathways for designing better performing perovskite optoelectronic devices.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.