Connor P. Delaney, Andrew F. Zahrt, Vincent M. Kassel and Scott E. Denmark*,
{"title":"Effects of Ring Size and Steric Encumbrance on Boron-to-Palladium Transmetalation from Arylboronic Esters","authors":"Connor P. Delaney, Andrew F. Zahrt, Vincent M. Kassel and Scott E. Denmark*, ","doi":"10.1021/acs.joc.3c0262910.1021/acs.joc.3c02629","DOIUrl":null,"url":null,"abstract":"<p >The structure of the diol from which an arylboronic ester is derived dramatically influences the rate of transmetalation in the Suzuki-Miyaura cross-coupling reaction. Some esters undergo transmetalation more than 20 times faster than the parent arylboronic acid. Herein, investigations into the influence of arylboronic ester ring size and steric properties on the mechanism of transmetalation in the Suzuki-Miyaura reaction are described. Both factors impact the propensity of an arylboronic ester to bind to a dimeric palladium hydroxide complex. The reaction of hindered arylboronic esters derived from 1,2-diols (1,3,2-dioxaborolanes) with palladium hydroxide dimers to form a complex incorporating a Pd–O–B linkage is thermodynamically favorable, but the barrier to coordination is often higher than the barrier to arene transfer. In contrast, the analogous reaction between arylboronic esters derived from 1,3-diols (1,3,2-dioxaborinanes) and palladium hydroxide dimers is thermodynamically unfavorable, as 1,3,2-dioxaborinanes exhibit decreased electrophilicity compared to esters derived from 1,2- or 1,4-diols. These factors also influence the barrier of the arene transfer step, and in many cases, arylboronic esters that do not easily form Pd–O–B linked complexes undergo transmetalation faster than those that do because of hyperconjugative stabilization of the arene transfer transition state.</p>","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":"89 22","pages":"16170–16184 16170–16184"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.joc.3c02629","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The structure of the diol from which an arylboronic ester is derived dramatically influences the rate of transmetalation in the Suzuki-Miyaura cross-coupling reaction. Some esters undergo transmetalation more than 20 times faster than the parent arylboronic acid. Herein, investigations into the influence of arylboronic ester ring size and steric properties on the mechanism of transmetalation in the Suzuki-Miyaura reaction are described. Both factors impact the propensity of an arylboronic ester to bind to a dimeric palladium hydroxide complex. The reaction of hindered arylboronic esters derived from 1,2-diols (1,3,2-dioxaborolanes) with palladium hydroxide dimers to form a complex incorporating a Pd–O–B linkage is thermodynamically favorable, but the barrier to coordination is often higher than the barrier to arene transfer. In contrast, the analogous reaction between arylboronic esters derived from 1,3-diols (1,3,2-dioxaborinanes) and palladium hydroxide dimers is thermodynamically unfavorable, as 1,3,2-dioxaborinanes exhibit decreased electrophilicity compared to esters derived from 1,2- or 1,4-diols. These factors also influence the barrier of the arene transfer step, and in many cases, arylboronic esters that do not easily form Pd–O–B linked complexes undergo transmetalation faster than those that do because of hyperconjugative stabilization of the arene transfer transition state.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.