Integrated multiomic analysis identifies TRIP13 as a mediator of alveolar epithelial type II cell dysfunction in idiopathic pulmonary fibrosis.

Laurence St Pierre, Asres Berhan, Eun K Sung, Juan R Alvarez, Hongjun Wang, Yanbin Ji, Yixin Liu, Haoze Yu, Angela Meier, Kamyar Afshar, Eugene M Golts, Grace Y Lin, Alessandra Castaldi, Ben A Calvert, Amy Ryan, Beiyun Zhou, Ite A Offringa, Crystal N Marconett, Zea Borok
{"title":"Integrated multiomic analysis identifies TRIP13 as a mediator of alveolar epithelial type II cell dysfunction in idiopathic pulmonary fibrosis.","authors":"Laurence St Pierre, Asres Berhan, Eun K Sung, Juan R Alvarez, Hongjun Wang, Yanbin Ji, Yixin Liu, Haoze Yu, Angela Meier, Kamyar Afshar, Eugene M Golts, Grace Y Lin, Alessandra Castaldi, Ben A Calvert, Amy Ryan, Beiyun Zhou, Ite A Offringa, Crystal N Marconett, Zea Borok","doi":"10.1016/j.bbadis.2024.167572","DOIUrl":null,"url":null,"abstract":"<p><p>Idiopathic pulmonary fibrosis (IPF) is a lethal progressive lung disease urgently needing new therapies. Current treatments only delay disease progression, leaving lung transplant as the sole remaining option. Recent studies support a model whereby IPF arises because alveolar epithelial type II (AT2) cells, which normally mediate distal lung regeneration, acquire airway and/or mesenchymal characteristics, preventing proper repair. Mechanisms driving this abnormal differentiation remain unclear. We performed integrated transcriptomic and epigenomic analysis of purified AT2 cells which revealed genome-wide alterations in IPF lungs. The most prominent epigenetic alteration was activation of an enhancer in thyroid receptor interactor 13 (TRIP13), although TRIP13 was not the most significantly transcriptionally upregulated gene. TRIP13 is broadly implicated in epithelial-mesenchymal plasticity. In cultured human AT2 cells and lung slices, small molecule TRIP13 inhibitor DCZ0415 prevented acquisition of the mesenchymal gene signature characteristic of IPF, suggesting TRIP13 inhibition as a potential therapeutic approach to fibrotic disease.</p>","PeriodicalId":93896,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":" ","pages":"167572"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bbadis.2024.167572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Idiopathic pulmonary fibrosis (IPF) is a lethal progressive lung disease urgently needing new therapies. Current treatments only delay disease progression, leaving lung transplant as the sole remaining option. Recent studies support a model whereby IPF arises because alveolar epithelial type II (AT2) cells, which normally mediate distal lung regeneration, acquire airway and/or mesenchymal characteristics, preventing proper repair. Mechanisms driving this abnormal differentiation remain unclear. We performed integrated transcriptomic and epigenomic analysis of purified AT2 cells which revealed genome-wide alterations in IPF lungs. The most prominent epigenetic alteration was activation of an enhancer in thyroid receptor interactor 13 (TRIP13), although TRIP13 was not the most significantly transcriptionally upregulated gene. TRIP13 is broadly implicated in epithelial-mesenchymal plasticity. In cultured human AT2 cells and lung slices, small molecule TRIP13 inhibitor DCZ0415 prevented acquisition of the mesenchymal gene signature characteristic of IPF, suggesting TRIP13 inhibition as a potential therapeutic approach to fibrotic disease.

综合多组学分析确定 TRIP13 是特发性肺纤维化肺泡上皮 II 型细胞功能障碍的介导因子。
特发性肺纤维化(IPF)是一种致命的进行性肺部疾病,迫切需要新的疗法。目前的治疗方法只能延缓疾病进展,肺移植是唯一的选择。最近的研究支持一种模型,即 IPF 的产生是由于肺泡上皮 II 型(AT2)细胞(通常介导远端肺再生)获得了气道和/或间充质特征,阻碍了正常修复。驱动这种异常分化的机制仍不清楚。我们对纯化的 AT2 细胞进行了转录组学和表观基因组学综合分析,发现了 IPF 肺部的全基因组改变。最显著的表观遗传学改变是甲状腺受体互作因子13(TRIP13)的增强子被激活,尽管TRIP13并不是转录上调最明显的基因。TRIP13 与上皮-间质可塑性有着广泛的联系。在培养的人类AT2细胞和肺切片中,小分子TRIP13抑制剂DCZ0415能阻止获得IPF特有的间质基因特征,这表明TRIP13抑制剂是治疗纤维化疾病的一种潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信