{"title":"In Vitro differentiation of hair-follicle bulge stem cells into synaptophysin-expressing neurons: a potential new approach for neuro-regeneration.","authors":"Mohamad Mahjoor, Maliheh Nobakht, Fatemehsadat Ataei Kachouei, Hamidreza Zalpoor, Fatemeh Heidari, Abazar Yari, Sanaz Joulai Veijouye, Hojjatollah Nazari, Nayereh Sajedi","doi":"10.1007/s13577-024-01146-y","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells, particularly bulge hair follicle stem cells (HFSCs), have recently attracted significant interest due to their potential for tissue repair and regeneration. These cells, marked by their expression of Nestin (a neural stem cell marker), suggest the possibility of neural differentiation into neurons. This study investigated the use of retinoic acid (RA) and epidermal growth factor (EGF) to induce HFSC transformation into mature neurons, identified by synaptophysin expression. Rat whisker follicles were cultured in a medium suitable for HFSC survival and proliferation. Immunostaining techniques were used to identify HFSCs and assess their differentiation into neural cells. The addition of RA and EGF to the culture medium aimed to induce this differentiation. Findings demonstrate that HFSCs expressed Nestin, indicating their pluripotent nature. Treatment with RA and EGF resulted in synaptophysin expression, a marker of mature neurons, which was absent in the control group. However, this treatment group also displayed a decrease in the expression of other neural markers (βIII tubulin and NeuN). This study suggests that a combination of RA and EGF can accelerate HFSC differentiation into synaptophysin-positive cells in vitro. This research paves the way for further exploration of its potential application in neuro-regeneration.</p>","PeriodicalId":49194,"journal":{"name":"Human Cell","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-024-01146-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stem cells, particularly bulge hair follicle stem cells (HFSCs), have recently attracted significant interest due to their potential for tissue repair and regeneration. These cells, marked by their expression of Nestin (a neural stem cell marker), suggest the possibility of neural differentiation into neurons. This study investigated the use of retinoic acid (RA) and epidermal growth factor (EGF) to induce HFSC transformation into mature neurons, identified by synaptophysin expression. Rat whisker follicles were cultured in a medium suitable for HFSC survival and proliferation. Immunostaining techniques were used to identify HFSCs and assess their differentiation into neural cells. The addition of RA and EGF to the culture medium aimed to induce this differentiation. Findings demonstrate that HFSCs expressed Nestin, indicating their pluripotent nature. Treatment with RA and EGF resulted in synaptophysin expression, a marker of mature neurons, which was absent in the control group. However, this treatment group also displayed a decrease in the expression of other neural markers (βIII tubulin and NeuN). This study suggests that a combination of RA and EGF can accelerate HFSC differentiation into synaptophysin-positive cells in vitro. This research paves the way for further exploration of its potential application in neuro-regeneration.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.