High range resolution spectral-scanning LiDAR based on optical frequency-domain reflectometry.

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2024-11-15 DOI:10.1364/OL.534930
Degangao Kong, Cheng Chen, Jiajun Wan, Yongqiang Wen, Xiaolei Zhang, Sujun Yuan, Xiaoping Liu
{"title":"High range resolution spectral-scanning LiDAR based on optical frequency-domain reflectometry.","authors":"Degangao Kong, Cheng Chen, Jiajun Wan, Yongqiang Wen, Xiaolei Zhang, Sujun Yuan, Xiaoping Liu","doi":"10.1364/OL.534930","DOIUrl":null,"url":null,"abstract":"<p><p>Spectral scanning, which utilizes the dispersive effect of light, is a simple and robust method for solid-state beam steering in light detection and ranging (LiDAR) applications. Powered by a tunable laser source, optical frequency-domain reflectometry (OFDR) is a high-precision measurement scheme that is inherently compatible with spectral scanning. Here, we propose a spectral-scanning LiDAR based on OFDR technology and demonstrate that, by connecting the measured spectral reflectivity and group delay of the targets with the dispersion equation, their cloud point data can be obtained. Moreover, compared to the spectral-scanning LiDAR based on the frequency-modulated continuous-wave (FMCW) ranging method, our proposed LiDAR scheme offers a more than tenfold improvement in range resolution with a large number of angular pixels. This enhancement enables high-resolution 3D imaging along both the angular and range axes.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6565-6568"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.534930","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral scanning, which utilizes the dispersive effect of light, is a simple and robust method for solid-state beam steering in light detection and ranging (LiDAR) applications. Powered by a tunable laser source, optical frequency-domain reflectometry (OFDR) is a high-precision measurement scheme that is inherently compatible with spectral scanning. Here, we propose a spectral-scanning LiDAR based on OFDR technology and demonstrate that, by connecting the measured spectral reflectivity and group delay of the targets with the dispersion equation, their cloud point data can be obtained. Moreover, compared to the spectral-scanning LiDAR based on the frequency-modulated continuous-wave (FMCW) ranging method, our proposed LiDAR scheme offers a more than tenfold improvement in range resolution with a large number of angular pixels. This enhancement enables high-resolution 3D imaging along both the angular and range axes.

基于光学频域反射测量的高分辨率光谱扫描激光雷达。
光谱扫描利用光的色散效应,是光探测与测距(LiDAR)应用中固态光束转向的一种简单而稳健的方法。在可调谐激光源的驱动下,光频域反射测量法(OFDR)是一种高精度测量方案,本质上与光谱扫描兼容。在此,我们提出了一种基于 OFDR 技术的光谱扫描激光雷达,并证明了通过将测量到的目标光谱反射率和群延迟与色散方程联系起来,可以获得其云点数据。此外,与基于频率调制连续波(FMCW)测距方法的光谱扫描激光雷达相比,我们提出的激光雷达方案在测距分辨率方面提高了十倍以上,并且具有大量的角度像素。这一改进实现了沿角度轴和测距轴的高分辨率三维成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信