Mostafa I Mohamed, Aurélien Coillet, Philippe Grelu
{"title":"2-µm energy-managed soliton fiber laser.","authors":"Mostafa I Mohamed, Aurélien Coillet, Philippe Grelu","doi":"10.1364/OL.544054","DOIUrl":null,"url":null,"abstract":"<p><p>To generate energetic short pulses from fiber laser oscillators in the 2-µm emission window, we here propose an alternative to the conventional methods of pulse stretching and dispersion management. We build a passively mode-locked fiber laser from anomalous single-mode fibers and utilize strong dissipative effects to delineate high and low pulse energy sections within the cavity. Whereas the main laser output delivers low-chirp sub-ps pulses with an energy up to 12 nJ, the intracavity pulse is reshaped into a ∼0.1-nJ conventional soliton, stabilizing the laser dynamics while enabling a wide tunability in both repetition rate and central emission wavelength.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6537-6540"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.544054","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To generate energetic short pulses from fiber laser oscillators in the 2-µm emission window, we here propose an alternative to the conventional methods of pulse stretching and dispersion management. We build a passively mode-locked fiber laser from anomalous single-mode fibers and utilize strong dissipative effects to delineate high and low pulse energy sections within the cavity. Whereas the main laser output delivers low-chirp sub-ps pulses with an energy up to 12 nJ, the intracavity pulse is reshaped into a ∼0.1-nJ conventional soliton, stabilizing the laser dynamics while enabling a wide tunability in both repetition rate and central emission wavelength.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.