Roles of copper(I) in water-promoted CO2 electrolysis to multi-carbon compounds.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaoyang He, Li Lin, Xiangying Li, Minzhi Zhu, Qinghong Zhang, Shunji Xie, Bingbao Mei, Fanfei Sun, Zheng Jiang, Jun Cheng, Ye Wang
{"title":"Roles of copper(I) in water-promoted CO<sub>2</sub> electrolysis to multi-carbon compounds.","authors":"Xiaoyang He, Li Lin, Xiangying Li, Minzhi Zhu, Qinghong Zhang, Shunji Xie, Bingbao Mei, Fanfei Sun, Zheng Jiang, Jun Cheng, Ye Wang","doi":"10.1038/s41467-024-54282-2","DOIUrl":null,"url":null,"abstract":"<p><p>The membrane electrode assembly (MEA) is promising for practical applications of the electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to multi-carbon (C<sub>2+</sub>) compounds. Water management is crucial in the MEA electrolyser without catholyte, but few studies have clarified whether the co-feeding water in cathode can enhance C<sub>2+</sub> formation. Here, we report our discovery of pivotal roles of a suitable nanocomposite electrocatalyst with abundant Cu<sub>2</sub>O-Cu<sup>0</sup> interfaces in accomplishing water-promoting effect on C<sub>2+</sub> formation, achieving a current density of 1.0 A cm<sup>-2</sup> and a 19% single-pass C<sub>2+</sub> yield at 80% C<sub>2+</sub> Faradaic efficiency in MEA. The operando characterizations confirm the co-existence of Cu<sup>+</sup> with Cu<sup>0</sup> during CO<sub>2</sub>RR at ampere-level current densities. Our studies reveal that Cu<sup>+</sup> works for water activation and aids C‒C coupling by enhancing formations of adsorbed CO and CHO species. This work offers a strategy to boost CO<sub>2</sub>RR to C<sub>2+</sub> compounds in industrial-relevant MEA by combining water management and electrocatalyst design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"9923"},"PeriodicalIF":14.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568296/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54282-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The membrane electrode assembly (MEA) is promising for practical applications of the electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon (C2+) compounds. Water management is crucial in the MEA electrolyser without catholyte, but few studies have clarified whether the co-feeding water in cathode can enhance C2+ formation. Here, we report our discovery of pivotal roles of a suitable nanocomposite electrocatalyst with abundant Cu2O-Cu0 interfaces in accomplishing water-promoting effect on C2+ formation, achieving a current density of 1.0 A cm-2 and a 19% single-pass C2+ yield at 80% C2+ Faradaic efficiency in MEA. The operando characterizations confirm the co-existence of Cu+ with Cu0 during CO2RR at ampere-level current densities. Our studies reveal that Cu+ works for water activation and aids C‒C coupling by enhancing formations of adsorbed CO and CHO species. This work offers a strategy to boost CO2RR to C2+ compounds in industrial-relevant MEA by combining water management and electrocatalyst design.

Abstract Image

铜(I)在水促进二氧化碳电解多碳化合物中的作用。
膜电极组件(MEA)在多碳(C2+)化合物的电催化二氧化碳还原反应(CO2RR)的实际应用中大有可为。在不含阴极溶解液的 MEA 电解槽中,水的管理至关重要,但很少有研究阐明阴极中的共进水是否能促进 C2+ 的形成。在此,我们报告了我们发现的一种具有丰富 Cu2O-Cu0 界面的合适纳米复合电催化剂在实现水促进 C2+ 形成效果方面的关键作用,在 MEA 中实现了 1.0 A cm-2 的电流密度和 19% 的单程 C2+ 产量,C2+ 法拉效率为 80%。操作表征证实,在安培级电流密度的 CO2RR 过程中,Cu+ 与 Cu0 共存。我们的研究表明,Cu+ 可促进水活化,并通过增强吸附 CO 和 CHO 物种的形成来帮助 C-C 耦合。这项工作提供了一种策略,通过将水管理与电催化剂设计相结合,在与工业相关的 MEA 中促进 CO2RR 到 C2+ 化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信